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Abstract 

With the increasing birth rate of new viruses and the rise in interConnectivity and 

interoperability among computers, the burden of detecting and destroying computer 

viruses is severe. This research integrated four different domains: computer virus 

detection, human immunology, computer immunology and constructive induction. First, 

a Computer Health System, based on the public health system, was defined that could 

possibly improve the current "global" approach to computer virus protection. Second, a 

computer immune model, based on the human immune system, was defined that could 

possibly improve the current "local" approach to virus detection. Third, the detection 

component of this computer immune model was developed, represented by the prototype 

MERCURY. This model utilized the machine learning concept of constructive induction 

to capture the human immune characteristics of detection, self-adaptation and memory. 

The results of analyzing MERCURY demonstrate a lack of representational 

power of computer virus byte patterns using selective induction. Therefore, constructive 

induction is needed to provide new, potentially powerful, and often necessary 

representations. However, the results confirmed constructive induction's main 

deficiency, the explosion in the number of hypotheses generated. The effects of this 

deficiency can be improved by utilizing key pieces of knowledge to guide construction. 

Process optimization through statistical techniques, provides direct insight into these key 

pieces of knowledge. Knowledge about the virus domain, such as characteristics of 

typical viruses and regularities in the byte patterns, also provides guidance for effective 

construction. 
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A CONSTRUCTIVE INDUCTION APPROACH 

TO COMPUTER IMMUNOLOGY 

1.      Introduction 

1.1.    Motivation 

The vision for the 21st Century Air Force includes aggressively expanding the 

efforts in information warfare, both offensively and defensively. The top priority is to 

defend capabilities in this arena by continuing to build up the defense of computer 

systems and improve our tactical and operational information warfare capabilities. With 

the Air Force's increasing rate of computer dependency, the threat of computer viruses is 

a rapidly growing concern. 

Computer viruses have been a growing concern since the early 1980s [FHS97]. 

To combat this problem, various antivirus programs have been created; however, the 

burden of detecting and destroying viruses is still severe. Two trends are inhibiting the 



effectiveness of current antiviral techniques: the increasing birth rate of new viruses and 

the rise in interconnectivity and interoperability among computers [Kep94]. Current 

techniques are reactive, labor intensive for virus researchers, have a slow response from 

time of discovery until the cure is prescribed, and require user intervention to update the 

virus signature database. Improving current antiviral techniques can combat these 

problems [Kep94]. 

Based on several properties of the human immune system, computer scientists 

hope new techniques to fight computer viruses will emerge. They believe that the human 

immune system has several useful characteristics for detecting computer viruses. These 

properties provide a robust, flexible and scalable system resilient to attack and a fresh 

perspective on computer viruses and other security problems [FHS97]. 

Human immune systems are unique, meaning individual immunity is derived and 

adapted differently; this is a desirable and applicable property of a computer system, as 

well. The immune system uses a decentralized and distributed detection process, also of 

interest in the virus detection domain. The human system is very flexible and does not 

require the absolute detection of every invader; instead, partial detection allows for 

quicker recognition of multiple invaders. In a computer system, this is similar to the use 

of byte pattern signatures as partial detectors for locating an infected file on a computer 

system. 

Another very important feature of the immune system is its ability to detect and 

react to invaders, or "nonself," while not inappropriately detecting what belongs in the 

body, or "self." This property applies to invaders that have been previously seen, as well 

as those previously unseen. The human system can learn the structures of these 



previously unseen invaders and remember them, so that the body's future responses to the 

same invader can be faster. 

These last three human immune properties of detection, adaptation, and memory 

are the most important throughout this research. These strengths of the human immune 

system are the foundation for the development of a new antivirus detection method, 

investigated in this research. 

Drawing on some of the strengths of the human system, other researchers have 

proposed computer immune models. These computer immune models incorporate many 

of the positive aspects of current antiviral techniques while introducing improvements 

such as automatic distribution of viral prescriptions, automatic recognition and removal 

of viruses, and protection of self [MVL98]. These models each provide an overall 

approach to an aspect of computer immunology, but do not always give a full picture that 

includes virus detection on an individual system. 

The research conducted in our investigation presents two computer models. The 

first model provides a "global approach" to computer health by incorporating individual 

computer systems through a computer health infrastructure. The second model provides 

a "local approach" to computer health by utilizing a method of virus detection, based on 

the properties of the human immune system. 

To properly model this individual detection system after the human immune 

system, a learning mechanism is required for the adaptation property. This mechanism 

provides an automated method for distinguishing between positive and negative instances 

of self that defines the overall concept of self. This learning mechanism is adaptive since 



it allows the definition of self to change; it "learns" by incorporating new viruses, 

representing nonself, into this definition. 

The specific learning mechanism utilized in this research is based on a form of 

machine learning called constructive induction. This mechanism derives knowledge 

from the observation of positive and negative examples of a concept, in this case, self. 

This type of learning attempts to characterize the concept by creating a description that 

captures the essence of the concept while distinguishing it from the counterexamples. 

This is accomplished by carefully selecting from the original attributes describing the 

examples and, when necessary, constructs new, more useful, attributes. This form of 

learning provides a mechanism for learning meaningful descriptions of complex data, 

such as distinguishing between self, those components authorized as part of the system, 

and nonself that does not belong on a computer system. 

Analogies between the human immune system and the computer immune system 

can be derived through constructive induction. Both systems create potential detectors 

for identifying invaders. There are differences, though. The body can afford to retain 

billions of detectors for "future use," and the inherently parallel nature of cellular activity 

allows constant testing against substances without performance degradation. The 

computer cannot maintain and test a large number of detectors without a loss in system 

performance. To create a practically useful system, complex detectors must be induced 

through the selection of byte patterns and the application of operators defining their 

interrelationships. Unsuitable or repetitive detectors are filtered out through testing. 

Other machine learning approaches, such as evolutionary algorithms and neural 

networks, also entail the necessary properties of construction and induction. Since they 



can be shown to perform "limited" construction based upon their sets of operators, this 

research focuses on the more general and deterministic learning program known as 

constructive induction. 

1.2.    Problem 

Due to the lack of an adaptation mechanism, many virus detection methods are 

insufficient at the individual system level. In addition, the global approach to computer 

health is inadequate. Though several immunological approaches have been studied, 

many lack a mechanism for the adaptive detection of viruses on an individual computer 

system. This research proposed utilizing the machine learning mechanism of 

constructive induction for the adaptive detection. However, the most difficult issue faced 

by constructive induction, as a field of machine learning, is the selection of the most 

useful operator-attribute combinations. These combinations create a computational 

explosion, necessitating the use of a priori knowledge to make the learning process more 

efficient. 

1.3.    Research Objectives 

This research integrated four different domains, depicted in Figure 1: computer 

virus detection, human immunology, computer immunology and constructive induction. 

First, a Computer Health System, based on the public health system, was defined that 



could possibly improve the current "global" approach to computer virus protection. 

Second, a computer immune model, based on the human immune system, was defined 

that could possibly improve the current "local" approach to virus detection. Third, the 

detection component of this computer immune model was developed, represented by the 

prototype MERCURY. This model utilized the machine learning concept of constructive 

induction to capture the human immune characteristics of detection, self-adaptation and 

memory. 

Virus 
Detection 

Computer 
Immunology 

A Computer 
Health System 

and 

A Computer 
Immune System 

Human 
Immunology 

Constructive 
Induction 

ive £ 

n \ 

Figure 1 ~ Research Domains 



The work accomplished as part of this investigation tested the following primary 

hypotheses: 

Primary Hypotheses 

1. The public health system is a useful model for a Computer Health 

System for the global protection of computer system against viruses 

2. The human immune system is a useful model for a virus detection 

system on an individual computer system 

3. Constructive induction provides a suitable learning mechanism 

for the virus detector system of an individual computer system 

The first two objectives of this research were to test the first two hypotheses to 

determine if the public health system and the human immune system were useful models 

for a Computer Health System and computer immune system, respectively. To 

accomplish this objective, research in the areas of public health and human immunology 

was conducted. The requirements, objectives and components of the models were also 

evaluated. Both computer models are informal, explanatory models based on some 

essential qualities of their respective systems. Due to the models' informalities, though, 

not all of their aspects were explicitly stated. 

The third objective of this research was to empirically test the third hypothesis. 

This objective investigated whether constructive induction was suitable for virus 

detection in a computer immune system. Testing was conducted utilizing MERCURY. 

While MERCURY captures the essence of constructive induction, it does not fully 



employ all the characteristics of a complete inductive engine. Therefore, based on the 

empirical analysis of MERCURY'S results, the hypothesis that constructive induction 

provides a suitable learning mechanism for the virus detector system of an individual 

computer system can not be accepted or rejected. Rather, the results of these tests 

provided empirical evidence and analytical knowledge that could make the learning 

process more efficient. Since the main disadvantage of constructive induction is its 

computational explosion, these results provided mathematically based methods which 

could decrease its computational complexity. These methods could improve the 

capabilities of a fully developed constructive induction based virus detector, by providing 

knowledge about the problem domain and the system parameters a priori. To confirm 

these findings, a process optimization simulation was conducted to demonstrate the 

effectiveness of a priori knowledge applied to the virus detection problem. 

The third hypothesis was decomposed into smaller, more manageable, sub- 

hypotheses. The first sub-hypothesis was the Virus Feature Hypothesis: 

Virus Feature Hypothesis 

Byte patterns can be used as the basis of a 

constructive induction based computer virus detector. 

This hypothesis captured the belief that byte patterns extracted from computer 

files are "adequate" features for distinguishing between positive and negative instances of 

self, defining the overall concept of self, and adapting to a changing definition of self. 

Current virus knowledge [KeA94] concludes that the use of byte patterns is an effective 



method for detecting a broad variety of conceivable mutations for a particular virus with 

a low false positive probability. To confirm this, MERCURY'S learning component was 

programmed to extract, manipulate, and test byte patterns from various files. Testing 

concluded that the learning component, using features composed of byte patterns, was 

able to distinguish between self and nonself files with varying degrees of accuracy. 

Therefore, it can be concluded that byte patterns can be used as the basis of a constructive 

induction based computer virus detector. 

The second sub-hypothesis was the Constructive Operator Hypothesis: 

Constructive Operator Hypothesis 

Logical and spatial operators can be used for 

constructing new attributes for the computer virus detector. 

This hypothesis validated that the choice of operators was "adequate" to construct 

new features, better distinguishing between infected and uninfected data. Current virus 

knowledge [KeA94] confirms the applicability of using relative and absolute locations of 

virus characteristics in a file, and the presence of multiple virus characteristics throughout 

one file to detect viruses.  To confirm this, MERCURY'S learning component was 

programmed to manipulate the byte patterns from various files based on two types of 

operators, logical and spatial. The logical operators AND, OR and XOR accounted for 

multiple, or restricted virus characteristics, whereas the spatial operators BEFORE and 

DISTANCE accounted for the positions of virus characteristics. Testing concluded that 

the learning component, using logical and spatial operators, was able to distinguish 



between self and nonself files with varying degrees of accuracy. Therefore, it can be 

concluded that logical and spatial operators can be used for constructing new features for 

the computer virus detector. 

The two sub-hypotheses are not independent. A stable definition of self, and the 

ability to distinguish between self and nonself are dependent on a combination of virus 

features and constructive operators. The difficulty of this problem is large due to the 

complexity caused by increasing the number of operators, features or both. The 

combination of these system parameters results in a large number of constructed 

attributes; therefore, some limitations were established. Evaluating these two sub- 

hypotheses separately and together resulted in a more effective basis for supporting the 

primary hypothesis. More importantly, the results of these sub-hypotheses provide the 

empirical analysis needed to improve the effectiveness of the overall learning process. 

1.4.    Approach 

This research contained three phases: model building, prototype development, and 

testing and analyses. The first phase built two computer models, the Computer Health 

System and the individual computer immune system. This modeling derived, by analogy, 

the important properties, functions, and requirements for the two computer models from 

the public health system and human immune system, respectively. The relationship 

between the two models is depicted in Figure 2. 
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Figure 2 - The Computer Health and Computer Immune Relationship 

Once modeling phase was complete, the second phase designed and developed the 

prototype MERCURY, capturing the essence of the individual computer immune model. 

MERCURY encompasses the human immune properties of detection, adaptation, and 

memory, and is comprised of three components: the virus scanner; the learning engine, 

HEC; and the knowledge base. 

The third phase included the testing and analyses of MERCURY. This system 

was trained on several computer files representative of self and nonself files on a 
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computer. The expected output was a set of byte patterns that could distinguish between 

self and nonself files. Testing of MERCURY was accomplished through two groups of 

test cases. The first group tested whether byte patterns, the rules combining the byte 

patterns, and the constructive operators used to construct new features from these byte 

patterns were applicable in the constructive induction approach to virus detection. The 

second group tested whether constructive induction provides a suitable learning 

mechanism for the virus detector system of an individual computer system. Additionally, 

the overall results were studied in order to focus this learning method, reducing its 

computational complexity. 

1.5.    Scope 

There are two methods of infection in the human body, intracellular and 

extracellular. Intracellular infections in the body are similar to abnormal byte patterns in 

a file since determination of an infection requires the "extraction" of information from a 

computer's version of a cell, the file. Conversely, extracellular infections, which are not 

attributed to a specific cell, are analogous to the detection of viruses through heuristic 

tests and analyses of system calls and abnormal system activity. MERCURY focused on 

the intracellular type of infection in the computer immune system, based on the method 

in which the virus infects the file, and the system's response to the infection. 

Instead of focusing efforts on implementing a fully operational virus detection 

component, the focus of this research was the application of constructive induction to the 
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virus detection domain. This research investigated the design and initial development of 

the adaptation mechanism based on this from of machine learning. This initial 

development included the choice of distinguishing features, selective induction rules, and 

constructive induction operators. Additionally, this research focused on improving the 

computational complexity of the learning process, in order to increase the applicability of 

this form of learning. 

This research recognized specific machine learning improvements that could be 

applied to current methods of virus detection, in order to improve performance. It also 

presented the incorporation of this constructive induction component into an individual 

computer's immune system, and further incorporated this system into an overall global 

picture of computer health. 

1.6.    Thesis Overview 

During this investigation, two computer immune models were presented: the 

Computer Health System and the computer immune system. MERCURY, the virus 

detection component of an individual computer immune system, was prototyped by 

integrating a constructive induction engine, HEC, with a virus scanning program, and a 

knowledge base. 

This document provides a discussion of this research effort, beginning in Chapter 

Two with a literature review of viruses, virus detection methods, constructive induction, 

and machine learning applications. Chapter Three provides an overview of the human 
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immune system and the public health system, presents previous research in the area of 

computer immunology, introduces the models of the Computer Health System and the 

computer immune system, and presents the virus detection component, MERCURY. 

Chapter Four provides insight into MERCURY'S design methodology, followed by a 

detailed discussion of its design and implementation in Chapter Five. Chapter Six 

presents the results of the system testing. Finally, Chapter Seven presents the conclusion 

that a constructive induction approach to computer immunology could improve computer 

virus detection. Additionally, Chapter Seven presents the conclusion that a computer 

immune system should be recognized and incorporated as a valuable component in a 

higher-level Computer Health System. This chapter also provides areas for future 

research within the various domains of computer immunology, machine learning, and 

virus detection. 
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2.      Literature Review 

2.1.    Overview 

This chapter presents the background knowledge needed to develop the 

constructive induction based computer virus detection component, MERCURY. The first 

section introduces computer viruses by describing their function and structure, and 

reviewing the different types of viruses known to infect computer systems today. The 

next section elaborates on the current methods used for virus detection and pinpoints 

some of their inadequacies. The last sections describe various machine learning methods, 

specifically the method of constructive induction used by MERCURY, as well as current 

research trends, which use other types of machine learning in computer security and 

intrusion detection applications. 

Chapter Three provides additional background knowledge in human immunology 

and public health needed to build the two computer models. It presents the Computer 

Health System, and the computer immune system of which MERCURY is a component. 
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2.2.    Computer Viruses 

Solid technical knowledge is the foundation for all viral defenses [Lud98]. To 

build an effective virus detector, an understanding of virus structure, function and 

behavior is needed. The following sections describe computer viruses by classifying the 

different types commonly encountered today, defining their functions, and examining 

their different structures and infection methods. 

2.2.1.  Definition and Structure 

A computer virus is a block of executable code that attaches itself to, overwrites, 

or replaces another program in order to reproduce itself without the knowledge of the 

user [NCSA96]. Computer viruses replicate by attaching to a host, usually a program or 

computer, and utilizing the host's resources to make copies of themselves. Computer 

viruses spread from computer to computer, in the same way that biological viruses spread 

among individual members of society [KSCW97]. 

A typical computer virus performs two functions. First, it copies itself into 

previously uninfected programs or files. Second, it executes the payload, or the intent of 

the virus. Common viral payload effects include deleting files, modifying files, 

displaying messages on-screen, or updating programs. Payloads can be damaging, 

amusing, or possibly even useful, but nevertheless unwanted and uncontrolled. A virus 

may cause damage by replicating itself and taking up scarce resources, such as disk 
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space, CPU time, or network connections [WCC89]. A virus requires manual 

intervention to begin its infection, but will continue to automatically infect programs 

once it is started [Che97]. 

Every computer virus contains must contain at least two routines, search and copy 

[Lud98]. The search routine locates new files or disks as targets for infection, determines 

which resource to infect and how often infection will occur. The virus' copy routine 

copies the virus into the resource, located by the search routine. There is a size vs. 

functionality tradeoff, though; the more sophisticated these routines are, the more space 

they will take up, easing detection. 

In addition to these two routines, some computer viruses contain anti-detection 

routines. These routines vary in complexity, from keeping the date in a file the same 

upon infection to camouflaging the virus completely. Most viruses may contain 

destructive routines, which carry out the possibly malicious "intent" of the virus. [Lud98] 

2.2.2.   Classification Methods 

Viruses can be classified according to the following characteristics: environment, 

operating system, different algorithms at work, and destructive capabilities. The 

following table provides a cursory overview of these types. 
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Table 1 - Classification of Viruses 

a 
§ s 

.2 

C 
1 

File 
Infector Viruses 

Boot 
Sector Viruses 

Macro Viruses 

Network 
Viruses 

TSR Capability 

Stealth 
Algorithms 

Self Encryption 
and 

Polymorphic 
Capability 

Non-standard 
Techniques 

Harmless 

Not Dangerous 

Dangerous 

Very Dangerous 

Infect executables in various ways, create file doubles, or use file 
system specific features. 
Save themselves in the disk boot sector or to the Master Boot 
Record, or change the pointer to an active boot sector. 
Infect document files, spreadsheets and databases of several 
popular software packages ~ 

Use protocols and commands of computer network or email to 
spread themselves. 
Infects a computer and leaves its resident part in RAM, which 
interrupts system calls to target objects and incorporates into them. 
Allows viruses to completely or partially cover their traces inside 
the operating system. The most common use is the interception of 
operating read/write calls to infected objects; stealth viruses 
"substitute themselves with uninfected pieces of information. 
Hard to detect due to absence of signatures; none of their code 
fragments remain unchanged. This may be achieved by encrypting 
the main body of the virus and making modifications to the 
decryption routine. 
Used to hide viruses deep within the operating system kernel; 
protects against detection and more difficult to remove. 
Have no effect on computing, except for a lowering of free space 
because of propagation and reduction in CPU utilization. 
Limit their effect to lowering free disk space and a few graphical, 
sound or other functions. 
Can seriously disrupt the computer's work. 
Contain routines that may lead to the loss of data, data destruction, 
and erasure of vital information in system areas. 

2.2.3.   Types 

Further classification of computer viruses can be accomplished according to the 

types of programs they infect and the method of infection employed [Lud98]. One such 

classification is between boot sector infectors and file infectors. Other viral types include 

macro viruses, stealth viruses, and polymorphic viruses. The following sections describe 

some of these common viruses. The file infector viruses are explained in detail, since 
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they are the type of virus MERCURY was developed to detect. This is information is 

needed for determining the best methods for extracting byte patterns from the files, the 

best operators for combining the byte patterns, and the overall knowledge needed for 

applying constructive induction to this domain. 

2.2.3.1.     File Infector 

File infector viruses affect the program files that a system must load in order to 

make software function. When the program executes, the virus code executes and infects 

more files [Lud98]. According to this method of infecting files, viruses are divided into 

overwriting, parasitic, companion and link viruses [Kas99]. 

The overwriting method of infection is the simplest; the virus overwrites the 

contents of a target executable with its own code, destroying the original contents of the 

target file. The executable file stops working properly and can not be restored. 

Parasitic viruses are file viruses that change the byte ordering within target files 

while transferring copies of themselves, but the files themselves remain at least partially 

usable. These parasitic viruses can be "prepending," by saving themselves at the top of 

file; "appending," by saving themselves at the end of file; "inserting," by inserting 

themselves in the middle of file; or "cavity," by copying of its own code to such parts of 

the file which are known to be unused. [Kas99] 

Virus incorporation at the top of a file is the most widely used method of insertion 

into DOS *.bat ,*.com and *.exe files [Kas99]. There are two known methods of 
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inserting a parasitic file virus at the top of file. The first involves copying the top of the 

target file to the end of file and then copying the virus body to the free space at the top of 

file. In the second method the virus creates a copy of itself in RAM, appends the target 

file and then saves the resulting concatenation to disk. 

Another common method of virus incorporation into a file is appending the virus 

to the end of file. In this method, the virus must also change the top of file so that the 

virus code is executed first. In DOS *.com files, this is achieved by changing the first 

several bytes to the instruction codes or to the address of the routine passing control to 

the body of virus. 

The final method of insertion into a file involves incorporating the virus into the 

middle of the file. In the simplest case the virus "spreads" the file by moving fragments 

of the file to the end and then writes its own code into the free space. Some viruses will 

even compress their inserted fragments so that the file size remains unchanged. A more 

difficult method is called "cavity" insertion, where a virus copies itself to unused areas of 

the file. 

The last two file infector viruses are companion and link. Companion viruses are 

another type of file infector virus that do not change the infected files. They operate by 

creating a copy of the target file and replacing the original with itself.  When the target 

file executes, the virus gets the control instead of the original file. Link viruses, like 

companion viruses, do not change the physical contents of files. However, when an 

infected file is executed, they "force" the operating system to execute their virus code by 

modifying the necessary fields of the file system. 
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2.2.3.2.     Boot Sector 

Boot sector viruses infect the boot sector of a disk, affecting the computer system 

during the start-up process. The boot sector is a small area on a disk that is read by the 

computer when it is booted. This virus' operating principal is based on the algorithms of 

starting an operation system upon power on or reboot. After the necessary hardware tests 

for memory and disks are run, the system loader routine reads the first physical sector of 

a boot disk and passes the control to it [Kas99]. These viruses are difficult to deal with 

because they are executed during the start-up process, before the system is able to load its 

antivirus software [Lud98]. 

2.2.3.3.     Macro viruses 

Macro viruses are programs written in macro languages built into some 

application programs, for example, spreadsheets. To propagate, these viruses use the 

capabilities of macro languages to help transfer themselves from one infected document 

or spreadsheet to another. Macro viruses for Microsoft Word, Microsoft Excel and 

Microsoft Office are the most common. A macro virus is possible if the macro language 

built into a system has the following capabilities: a macro program must be tied to a 

particular file, macro programs must have the ability to be copied from one file to 

another, and a macro program must be able to receive control without user intervention. 

[Kas99] 
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They are the first viruses to infect data files, rather than executables. Data files, to 

which macros are attached, provide viruses with a more effective replication method than 

executable files. The effects of macro viruses are growing; data files are exchanged far 

more frequently than executable files, through e-mail and the Internet. 

2.2.3.4.     Network 

Network viruses utilize networking protocols and the capabilities of local and 

global access networks to multiply. Their main operating principle is the capability to 

transfer viral code to a remote server or workstation. "Full-scale" network viruses also 

have the ability to run their code on remote computers and "trick" users to run the 

infected files. [Kas99] 

2.2.3.5.     Other Types 

Other viruses are not as well understood as the types mentioned previously. They 

are trickier in their methods of avoiding virus detection, and present great problems to 

antivirus analysts and programmers. These types of viruses would not be recognized by 

the current scanning and analyzing techniques of MERCURY. 

One of these more complicated viruses is the stealth virus. A stealth virus 

attempts to evade detection by concealing itself in infected files. To achieve this, the 

virus intercepts system calls that examine the contents or attributes of infected files. The 
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results of these calls are altered to correspond to the file's original uninfected state. For 

example, a stealth virus might remove the virus code from an executable when it is read, 

instead of executed, so that an antivirus program will examine the original, uninfected 

host program. [Lud98] 

Another tricky virus is the polymorphic virus. These viruses are programmed to 

change their internal code each time they replicate, making them more resistant to 

detection. Their main component is the polymorphic generator, which is responsible for 

creating varying encryption and decryption routines. These routines are used to hide the 

existence of the virus by constantly changing the byte signature of the virus [Kas99]. 

Since the most common method of virus detection is scanning for viral byte patterns, as 

in MERCURY, the detection program would likely be easily defeated. If you take two 

instances of the same polymorphic virus, there are no bytes in common between them. 

MERCURY, like most viral scanners would not be able to capture a unique byte pattern, 

in order to detect this ever-changing virus. 

2.3.    Antivirus Programs 

Antivirus programs are the most effective means of fighting viruses, but there are 

no antivirus programs that guarantee 100 % protection from viruses [AAV97]. Such 

programs do not exist because for each antivirus algorithm, it is always possible to 

suggest a virus "counter" algorithm; however, the opposite is also true. For any virus 

algorithm, it is always possible to create an antivirus; the cycle never stops! Furthermore, 
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the impossible existence of the absolute antivirus program has been mathematically 

proven by Fred Cohen, based on the theory of finite slot machines [AAV97]. 

As futile as it may seem, it is important to study viruses in order to uncover their 

weaknesses. Once these vulnerabilities are discovered, antivirus methods can be 

exploited, and virus detection improved. The following sections describe detection 

issues, current antivirus methods, their functions and their deficiencies. 

When speaking of virus detection methods, it is necessary to understand some 

terms used in this discussion. A "false positive" is defined as an uninfected object, in the 

case of MERCURY, a self file, that triggers the antivirus program inadvertently. 

Conversely, a "false negative" is defined as an infected object that remained undetected 

by the detection system. "On-demand scanning" refers to virus scanning that starts on 

the user's request; if fully implemented, MERCURY would exhibit this characteristic. In 

this mode the antivirus program remains inactive until the user invokes it from command 

line, batch file or system scheduler. "On-the-fly scanning" methods, however, are 

constantly checking for viruses. In this method, the antivirus program is always active; it 

resides permanently in memory and checks objects, without the user's request. [AAV97] 

2.3.1.   Purpose 

Computer viruses are detected by antivirus programs through the exact or "fuzzy" 

pattern recognition of a sequence of bytes called a signature, suspicious changes to files, 

or heuristic monitoring of "normal" viral activity. A powerful antivirus program would 
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likely use a combination of these techniques. In addition to detecting the existence of a 

virus, some antivirus programs are responsible for repairing the damage caused by 

viruses [Kep94]. 

Typically, a "virus expert" obtains information about a particular virus by 

disassembling it and analyzing the assembly code to determine the virus' behavior and 

the method used to attach it to a host program. When the analyst has precise knowledge 

of the virus' attachment method, he can construct repair algorithms for a large class of 

similar viruses. This implies the virus has probably already infected files, possibly 

destroying data. Additionally, this reactive, labor intensive process requires manual 

intervention. 

This research builds a computer immune model as part of a larger computer 

health model, and hypothesizes that constructive induction may offer an approach to 

detecting computer viruses that is both proactive and automated. Machine learning 

potentially provides the automation, while focusing on the self that belongs on the 

computer. Suspicion of the nonself may provide the insulation against the invaders. 

Since this research is only concerned with detection of viruses and not the repair of the 

damage, the following sections address the methods of detection currently used. 

2.3.2.  Requirements 

The effectiveness and efficiency of an antivirus program is determined and can be 

measured by its reliability, quality of detection, and speed of completion. [AAV97] 
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The reliability of antivirus programs is the most important criterion, because even 

the best detector becomes useless if it cannot finish the scanning process. Reliability 

measures the ability of the program to finish the scanning process without unnecessary 

technical intervention from the user. If the program is unable to finish, parts of the disks 

and files will remain unchecked, possibly leaving a virus in the system undetected. Since 

MERCURY is not a fully functional virus detection system, this requirement could not be 

fully assessed. 

Virus detection quality is the next requirement, since the main purpose of an 

antivirus program is to detect and remove viruses. Any antivirus program is useless if it is 

unable to catch viruses, or does it with low quality. The "perfect" detector would have a 

very high detection rate, accompanied by low false positive and false negative rates. If 

an antivirus program causes many false positives errors, then its level of usefulness drops 

significantly. This situation would cause the user to either delete uninfected files or 

analyze suspicious files, triggering frequent false alarms. 

MERCURY was designed to favor detectors that classified a large number of files 

correctly. Additionally, the overall set of detectors was evaluated to ensure that the entire 

set of files was classified. The quality measures for each detector are supplemented by 

the quality measures for the set of detectors, which rate the percentage of files classified 

by the entire set of detectors. Due to the MERCURY'S "infancy," assumptions about the 

quality of detection would be premature. The detailed results of the testing are presented 

in Chapter Six. 

The next important criterion is working speed. If a full system check requires 

several hours to complete, it is unlikely that most users are going to run it frequently. 
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Currently, a disadvantage to MERCURY is its time to completion. However, several 

optimization methods are presented in Chapters Six and Seven that could attenuate this 

deficiency. 

2.3.3.  Types 

The most popular and effective antivirus programs are scanners. They are 

followed by integrity monitors because of their effectiveness and popularity. Most of the 

time, though, both of these methods are combined into one versatile and more powerful 

antivirus program [AAV97]. The following sections describe these different methods. 

2.3.3.1.     Scanners 

The principle operation of antivirus scanners is based on checks of files, sectors 

and system memory, and search for known and new, unknown viruses [AAV97]. A 

scanner recognizes viruses through an exact or fuzzy match of a relatively short sequence 

of bytes occurring in the virus called a "signature." Matching a small portion of the virus 

is more efficient in time and memory, and it enables the system to recognize variants. 

The signature is determined through a manual and tedious analysis of the viral code by 

virus experts. In addition, once the new signature is determined, the database of 

signatures is updated, requiring each user to manually update the local copy of the 

database on a regular basis. Between updates, though, users may be left exposed to 
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spreading viruses. Researchers at the High Integrity Computing Laboratory [KeA94] 

investigated methods for automating this process. Their computer immune system 

generated byte patterns that detected nonself and stored them for the scanner. MERCURY 

also uses this method ofantivirus detection. Scanning was chosen over the other 

detection methods due to its programmability, modifiability, simplicity, and functionality. 

This research recognizes that signature scanning is only a part of a robust virus checker; 

the scanning method was utilized as a tool for the proof-of-concept of constructive 

induction applied to the virus detection domain. 

Scanners are divided into resident programs that work on-the-fly; and non- 

resident programs that check the system only on request. In most cases, resident scanners 

provide better system protection, because of their immediate reaction to the appearance 

of virus, whereas nonresident scanners can only detect viruses when executed [AAV97]. 

Scanners, including MERCURY, have the common advantage of versatility, and 

common disadvantages of large virus databases and relative slowness of virus search. 

2.3.3.2.     Integrity Monitors 

Integrity monitors operate by calculating checksums for disk files and system 

sectors. These checksums are saved to a database along with data about file sizes and the 

dates of last modification. On subsequent runs integrity monitors compare database 

information with currently calculated values. If the database entry for a file differs from 

the file's current characteristics, the integrity monitor reports file modification or possible 

28 



virus infection [AAV97]. While this method can determine if a file is changed, it 

provides no information on the legitimacy of the change. 

Integrity monitors cannot catch a virus immediately after its infiltration. Rather, it 

detects after a period of time, when the virus has already spread throughout the computer. 

Additionally, this method cannot detect viruses in newly arrived files, like e-mail 

attachments, since these files do not have a baseline checksum. 

2.3.3.3.     Behavior Blockers 

Antivirus behavior blockers are memory resident programs that intercept potential 

virus danger and warn the user about it. Virus danger may be detected during write calls 

to executable files, boot sector writes or during operations that may be conducive for 

viruses to spread. [AAV97] 

Blockers are able to spot and block the virus at the earliest stage of infection, 

which is useful when a virus repeatedly launches surprise attacks. However, the 

challenges to this method are virus algorithms that override a blocker's protection and a 

possibility of a large number of false alarms. There are some improved versions of 

blockers with greater versatility, but they also have problems of compatibility with 

standard hardware configuration of computers, and are difficult to set up and configure. 

All these reasons make behavior blockers extremely unpopular compared to other 

methods of antivirus protection. 
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2.4.    Machine Learning Methods 

An important issue in artificial intelligence is machine learning, which enables 

machines to adapt, in order to improve their performance [ABKS94]. Machine learning 

research can be divided into five areas: neural networks, genetic algorithms, instance 

based learning, analytic learning and inductive learning [LaS95]. Neural networks 

attempt to model the structure of the brain by representing knowledge as a multilayer 

network of units that spreads activation from input nodes through internal units to output 

nodes [LaS95]. Genetic algorithms model the process of chromosome mutation through 

a series of rules generated by combining and/or mutating aspects of existing rules. 

Instance based learning uses a database of specific cases and experiences that are 

matched to general problems. Analytic learning uses logic to solve a problem by proving 

it from the supplied background knowledge. Collections of these proofs are then 

compiled into rules used to solve similar problems. Finally, inductive learning attempts 

to search for the combination of rules and attributes that best describe the problem that is 

represented as a series of examples, both positive and negative. 

The following sections focus on inductive learning, specifically constructive 

induction, since this method of induction will be used as the learning mechanism for 

MERCURY. The application of this learning method, and the components and processes 

of constructive induction used for the design, development and implementation of 

MERCURY are detailed in Chapter Five. 
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2.4.1.  Inductive Learning 

Induction is a form of automated machine learning that derives knowledge from 

the observation of positive and negative examples of a concept. It attempts to 

characterize this concept by carefully selecting attributes, which are characteristics 

describing the examples, and, when necessary, constructing new, more useful, attributes. 

By characterizing the concept, this type of learning explains the given examples and is 

useful for predicting the class membership of subsequent unseen examples. The goal of 

the constructive induction process is either characteristic learning or discrimination. 

Characteristic learning is the ability to describe the examples. Discrimination is the 

ability to distinguish between positive and negative examples [Gun91]. MERCURY'S 

learning component uses the discrimination form of induction to distinguish between self 

and nonself files on a computer system. 

Inductive learning performs a series of manipulations that determines the best 

attributes needed to describe the current example set and distinguish between positive and 

negative examples. The end result of inductive learning is a description known as a 

hypothesis, a statement relating descriptive attributes of a concept to values those 

attributes assume in examples of the concept. A hypothesis indicates an approximation 

of the concept, subject to change, should future examples indicate it is incorrect. 

Collectively, these hypotheses form a rule base to describe the concept. 

There are two forms of inductive learning: selective induction and constructive 

induction. For example, age, height, and weight can be the attributes to describe an 

instance of a person. To characterize the concept of "AFIT students," students would be 
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used as positive examples and non-students as negative examples. Based on the attribute 

values of both the examples and counterexamples, a hypothesis could be made which 

separates students from non-students. If this can be accomplished by carefully selecting 

from the original attributes, this process is known as selective induction. If the original 

attributes are insufficient for this task, then new, more useful attributes are constructed; 

hence, the term constructive induction. In the previous example, if weight and height 

were insufficient attributes to characterize the concept of AFIT students, a new attribute 

could be constructed by combining one or more of them. For example, the new attribute 

could be BMI, Body Mass Index, which is calculated using weight and height. The final 

collection of hypotheses that best describes the concept forms the rule base. The 

following sections describe the components of an induction system and the two forms of 

inductive learning. 

2.4.1.1.     Components of Induction 

An induction system is composed of several components: a representation of the 

problem, a set of examples that are described by the representation, rules that are used to 

construct new hypotheses, and background knowledge called bias. Selective and 

constructive induction differ by the process each uses to generate hypotheses. Selective 

induction is highly limited and the construction occurs in the build up of the final 

representation. 
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Representation is how the world is presented to the system. There are two key 

components of a representation: attributes and representation structure. Attributes are 

normally defined by inspection of the problem domain and information gained from 

experts. For example, the attributes used in this virus detection domain problem are bytes 

from a file. Determining the "best" attributes that allow the induction to work properly is 

the most important representation issue for inductive systems. This can be a complicated 

process, since the proper attributes may not be readily apparent to either the system 

developer or domain experts. There are varieties of different representation structures 

that can be used for maintaining the attributes inside of the system. Common methods 

include predicate calculus, decision trees, semantic networks and frames. [DiM81] 

The importance of choosing the right attributes in the early stages of learning is a 

crucial concept in the implementation of MERCURY. Though not a fully developed 

constructive induction engine, MERCURY should benefit tremendously from prior 

knowledge of the virus domain, as well as the performance of features and operators used 

for the construction of new attributes. 

An example set is used to initially train the system. Since induction relies upon 

examples to test if the system has generated an appropriate hypothesis, the types of 

examples used are important. The example set can normally be divided into two 

categories, each with two subcategories. The first division should divide the examples 

into a category used for training and a category used for testing. Training examples are 

used to perform the induction process. Testing examples are utilized to analyze how 

effective the process really was. Both training and testing example sets should include 

positive and negative examples. Negative examples should include examples that are 
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both very different from and very close to the positive examples, in order to "fit" the best 

rule for defining the concept. 

The number of examples needed is an important decision. The probability 

distribution describing the problem space is often difficult to determine for several 

reasons. The experimenter may have limited knowledge of the concept; the number of 

possible examples may be limited; or there may be an improper division of the example 

set, resulting in a statistically different distribution than the problem space. 

Selecting the induction rules utilized by the system is also an important factor. 

These rules guide the selection of appropriate hypotheses, which form the best rule base. 

The varieties of inductive rules are subsequently discussed in the hypothesis generation 

section. 

Bias is any factor that influences the hypotheses that are generated and evaluated. 

This factor is intrinsic to the inductive process, based upon the incorporation of the 

representation and the inductive algorithms utilized. Bias is information developed 

through common sense or derived by expert knowledge about the concept domain; it can 

decrease the time the system spends working with hypotheses that are later discarded. 

Bias is a domain specific issue and can rarely be generalized to all systems. [Pro92] 

A bias can affect the learning time, space usage and accuracy of the system. 

Therefore, when choosing a bias the developer must make certain tradeoffs among the 

factors of the system. One tradeoff is the accuracy of learning versus the learning time. 

For example, as the number of attributes available to the system increases, so does the 

induction learning time. Another tradeoff is accuracy of learning versus the efficiency of 
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space usage. A bias, such as a limiting the number of hypotheses, may inadvertently 

discarded the correct solution. [Pro92] 

2.4.1.2.     Selective Induction 

Selective induction determines a combination of attributes that best describes the 

concept. Selective induction hypotheses are limited to applying the conjunction, 

disjunction, and negation operators to the given attributes. The conjunction operator joins 

two or more propositions through a logical and; both propositions must be true for the 

conjunction to be true. The disjunction operator joins two or more propositions through a 

logical or, one of the propositions must be true for the disjunction to be true. Finally, the 

negation operator states that a particular proposition can not be included in the concept. 

The selective induction process does not create new attributes, but instead combines 

existing ones. Selective induction generalizes conjuncts of attribute values or partitions 

instance space into contiguous regions. Conversely, constructive induction transforms 

the original representation by associating diverse conjuncts or dispersed regions that may 

appear unrelated [Ren90]. 

2.4.1.3.     Constructive Induction 

Constructive induction, like selective induction, determines a combination of 

attributes that best describes the concept. However, the constructive inductive process 
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creates hypotheses by constructing new attributes. The process applies a variety of 

operators to the original attributes from the representation.   These hypotheses are tested 

against the example set and incorporated into the rule base, if appropriate. The following 

sections describe the processes necessary to develop a constructive induction based 

learning mechanism. 

2.4.1.3.1.      The Constructive Induction Process 

As previously stated, inductive learning depends on the ability of the machine to 

create hypotheses, indicating an approximation of the concept. Gunsch [Gun91] 

describes a framework for the inductive learning process that follows the path of 

hypotheses through the inductive system. The following sections describe the four 

processes of induction. 

Hypothesis generation. The first step of the inductive learning process is the 

creation of new hypotheses based on current rules and attributes. Prior knowledge about 

the concept can help to explicitly define the hypotheses, or to guide the selection or 

retraction of operators to create new rules. An application of bias includes simplifying 

conjunctive rules, turning constants into variables, extending the range of an attribute, 

combining the attribute value intervals, and creating new rules that include exceptions. 

An exception can be found by looking for positive and negative examples that use similar 

attributes. For example if a positive example is described by P(x) and a negative example 

by P(x) A Q(x) the exception is P(x) A -.Q(X) [DiM81]. Other methods to induce rules 
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involve applying mathematical operators (+,-,*,/) or logical operators (A,V,-I) to the 

attributes used in the representation. 

Hypothesis ordering. Hypothesis ordering takes the generated hypotheses and 

performs a preliminary check to ensure that only the most promising of the hypotheses 

are evaluated. This step is a "heuristic, beam-sort approach and therefore does not 

guarantee perfect filtering" [Gun91]. The main purpose of this step is to limit the number 

of hypotheses to be evaluated, since hypothesis evaluation is an expensive process. This 

is a form of bias necessary to control the computational explosion generated by this 

learning method. Biases made during the development of MERCURY'S learning 

component are discussed in Chapter Five. 

Hypothesis evaluation. During hypothesis evaluation, each hypothesis is tested 

against the goal of the system to determine if it should be used. As described earlier, the 

goal of the constructive induction system is either characteristic learning or 

discrimination of positive and negative examples. If the hypothesis adequately meets the 

goal, then it is reserved for incorporation into the rule base. For example, hypotheses 

generated by MERCURY'S learning component are evaluated based on their purity and 

power scores. Power measures the strength of the hypothesis by rating the percentage of 

classified examples over the entire set of examples, regardless of correctness. Purity 

calculates the percentage of examples classified correctly, over the total number of 

examples classified. If the hypothesis does not meet the goal, it is discarded or returned 

to the hypothesis generation step for additional inductive refinement. This step is 

computationally expensive since every hypothesis must be compared against all the 

members of the example set. 
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Hypothesis incorporation. In the final step, those hypotheses that have been 

determined to meet the system goals are incorporated into the rule base. The hypotheses 

are arranged within the rule base in the order they reduce entropy. Entropy is the amount 

of disorder remaining within the divisions of the examples after applying a hypothesis or 

group of hypotheses. 

2.5.    Machine Learning Applied to Detection and Recognition 

Machine learning can help solve difficult, real-world problems which have well- 

defined tasks, implemented programs, and identified principles [Win92]. Intrusion 

detection, is one such problem; there are many applications of machine learning in 

computer security systems. The following sections describe the use of different machine 

learning methods to detect or recognize intruders, such as hackers or viruses, in computer 

systems. 

2.5.1.   Incremental Learning Applied to Computer Intrusion Detection 

Research conducted at the George Mason University [MaM95] describes an 

incremental learning method, which modifies the current hypotheses set by combining 

past training examples with new ones. The proposed method is incremental because 

additional examples are incorporated into the training set over time. For this study, the 

process was applied to the domain of intrusion detection in computer systems. This 
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domain was chosen computer systems needs to interact with users and the environment to 

adapt to changing conditions and behaviors. Researchers believe this method to be 

effective for applications involving intelligent agents in a changing environment, active 

vision, and dynamic knowledge bases. 

The first phase of the methodology is traditional for the learning by examples 

method. It involved building an adequate training set, which provided the learning 

mechanism a sufficient concept of the computer environment. The second phase 

involved incrementally teaching the machine and customizing the concept to the specific 

environment of a particular user. The system received reinforcement or criticism from 

the user and/or environment. This approach uses feedback from the user or environment 

to determine training examples. 

Concerns when applying this method are similar to concerns when a learning by 

example approach is taken. The choice of representative examples and the maintenance 

of these examples throughout the learning process are both important issues. Attributes 

considered important in the early stages of learning might not be important in later stages; 

more importantly, attributes considered unimportant in the early stages of learning might 

be important in later stages. For a rapidly changing domain, it is probably more 

beneficial to replace "old" attributes with "new and improved" attributes. For a more 

stable environment, it might be more practical to keep all attributes. 

Compared to a batch method of providing all examples at once, the proposed 

method yielded significant gains in regard to learning time and memory requirements, but 

lost some predictive accuracy and gained concept complexity. Though the experiment 
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was scaled down significantly, future work will involve applying this method to more 

complex problems. 

MERCURY does not allow for incremental learning, but future iterations should. 

Virus detection, like intrusion detection, requires a degree of interaction with users and 

the environment to adapt to constantly changing conditions and behaviors. Future 

versions of MERCURY should allow for relearning when the definition of self changes, 

the system learns incorrectly, or the system receives virus prevention or detection 

information from other components in the Computer Health System. 

2.5.2.  Neural Networks Applied to Computer Virus Detection 

Researchers at the IBM Thomas J. Watson Research Center [TKS96] developed a 

neural network for the detection of boot sector viruses, which was deployed 

commercially, as part of the IBM Antivirus software package. The team faced several 

challenges such as representation scheme, scarcity of training data, tradeoffs between 

false positive and false negative errors, and memory and computational complexity 

limitations. 

They developed a representation scheme based on features of byte strings from 

infected and non-infected files, and using frequency analysis, narrowed the list of features 

to those whose probability of occurrence was higher. Their limited examples were 

divided into training and testing sets, with additional "man-made" inputs to combat 

generalization, or underlearning of the concept. For practical virus detection, more 
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emphasis was placed on false positives, instead of false negatives; false positives are 

much more frequent. Memory and CPU constraints were reduced through changes in 

storage formats, but present future challenges to commercial use of larger mutilayer nets. 

The neural net's performance performs as expected, having caught 75% of all 

new boot sector viruses since its release. Most of the viruses not caught eluded the 

system because their byte patterns were obscured in some way; improvements are 

constantly being made. 

Similar to the system developed at IBM, MERCURY relies heavily on a priori 

knowledge. The results in Chapter Six show that statistical guidance can be used when 

developing the learning mechanism, reducing computational complexity and improving 

the method's efficiency. 

2.5.3.   Genetic Algorithms Applied to Recognition in the Immune System 

Researchers [FJSP93] built a model to study the pattern recognition processes and 

learning that take place in the immune system, with a genetic algorithm as its central 

component. Antigens and antibodies, the major players in the human immune system 

were represented as binary strings. An antibody matches an antigen if their bit strings are 

complementary; however, the strings do not need to match exactly. Matching functions 

were defined, evaluated on their matching abilities, and awarded a fitness value. 

In principle, the genetic algorithm should be able to find the matches with the 

highest fitness values by evolving a population of antibodies. Though there was much 
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"noise" in the experiment, the algorithm was able to detect common patterns for 

antibodies. It also did not overlearn the problem by maintaining diversity within its 

population. This algorithm for maintaining diversity is related to the ordering and 

evaluating mechanism commonly employed in learning classifier systems. 

Again, this research stresses the importance of domain knowledge to guide the 

learning process and improve the classification results. 

2.6.    Summary 

This chapter presented a description of the areas needed to develop a constructive 

induction based computer virus detection system. The literature review described the 

function, structure, and types of computer viruses and explained the inadequacies of the 

current methods used for their detection. Another aspect of a virus detection system is 

the learning mechanism, also discussed this chapter. It described machine learning 

methods, focusing on the method of constructive induction. Current research areas 

applying machine learning to computer security problems were also addressed. 

Chapter Three describes the analogies that can be drawn between MERCURY, 

the constructive induction based virus detector, and certain characteristics of the human 

immune system. The chapter also describes how this computer immune system fits into a 

larger model of a Computer Health System. Chapters Four and Five provide general and 

detailed descriptions, respectively, of a constructive induction based computer virus 

detector. 
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3.      Computer Immune Models 

3.1.    Overview 

Chapter Two described current methods of virus detection, concepts of 

constructive induction, and research trends utilizing machine learning for computer 

security and detection. This chapter explains some analogies between computer systems 

and human systems by comparing the mechanisms used for the local detection and global 

protection against virus invaders. The two computer models are the Computer Health 

System, based on public health system, and the computer immune system, based on the 

human immune system. Therefore, the first two sections provide discussions of these 

immunologically-based areas. In addition, research trends in the area of computer 

immunology are addressed. Finally, the computer models are presented. Their 

characteristics and components are defined individually, and their requirements are 

discussed. Special attention is afforded to MERCURY, the virus detection component of 

a computer immune system. Chapters Four and Five provide general and detailed 

descriptions of MERCURY, respectively. 
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3.2.    An Overview of the Public Health System 

Public health is the science and art of preventing disease, prolonging life and 

promoting health through an organized community effort responsible for: sanitizing the 

environment, controlling communicable infections, educating the individual in personal 

hygiene, organizing medical and nursing services for the early diagnosis and preventative 

treatment of disease, and developing a standard of living adequate for the maintenance of 

health. [Tur97] 

The public health system is a social enterprise that utilizes current knowledge in 

order to have the maximum impact on the health of a population. It identifies problems 

that call for a preventative "team" approach to protect, promote, and improve health. 

Public health is a collective effort to identify solutions that prevent and avoid health 

problems. 

Public health's prevention efforts in the form of social policies, community 

actions and personal decisions are responsible for 25 years of the 30-year improvement in 

life expectancy since 1900 [Tur97]. Economic benefits of the public health system can 

be measured in terms of prevention treatment over cure treatment cost savings. 

3.2.1.  Functions of the Public Health System 

The public health system has three core functions: assessment, policy 

development and assurance, described in the following sections [Tur97]. 
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3.2.1.1.     Assessment 

The public health system assesses the health needs of the community by 

establishing a systematic process that periodically provides information on the health 

status and health needs of the community. The system also investigates health hazards in 

the community by conducting investigations that identify the magnitude of health 

problems, duration, trends, location, and populations at risk. The third aspect of 

assessment involves analyzing the elements of identified health needs in order to find 

causes and contributing factors that place parts of the population at risk of adverse health 

outcomes. 

3.2.1.2.     Policy Development 

This system function advocates public health, builds constituencies, 

identifies resources in the community and generates relationships with public and private 

agencies for the effective planning, implementation and management of public health 

activities. The system must set priorities among health needs based on the size and 

severity of the problems and the acceptability, economic feasibility and effectiveness of 

intervention. Another aspect of this function is the development of plans and policies 

addressing priority health needs and establishing goals and objectives that focus on local 

community needs. 
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3.2.1.3.     Assurance 

The third function involves managing resources and developing organizational 

structure through the acquisition, allocation, and control of human, physical, and fiscal 

resources. This includes maximizing the operational functions of the local public health 

system through the coordination of community agencies and efforts to avoid duplication 

of services. The system must also implement programs and other arrangements to ensure 

direct services for priority health needs identified in the community. Additionally, this 

function must evaluate programs, provide quality assurance, ensure programs are 

consistent with plans and policies, and provide feedback on inadequacies and changes. 

Informing and educating the public on community health, promoting an awareness about 

available public health services and promoting health education initiatives are an 

important aspect of this function because they contribute to individual and collective 

changes in health knowledge, attitudes, and practices. 

3.2.2.  The Public Health System Framework 

To understand what public health represents and how the components relate to 

each other, a conceptual and understandable framework is necessary. This framework 

brings together the mission and functions of public health in relation to the inputs, 
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processes, outputs, and outcomes of the system. The following table summarizes these 

components [Tur97]. 

Table 2 -- Public Health System Components 

Inputs or 
Capacities 

Practices or 
Processes 

Outputs or 
Services 

Outcomes or 
Results 

Community leadership, human resources, fiscal, and physical resources, 
information resources, and system organization necessary to carry out 
the core functions of public health  
Organizational practices or processes that are necessary and sufficient to 
ensure that the core functions of public health are being carried out 
efficiently 
Health services intended to prevent death, disease, and disability and to 
promote the quality of life 

Indicators of health status, risk education, and quality-of-life 
enhancement 

The mission of the public health system is to promote physical and mental health 

and prevent disease, injury and disability. The core functions of public health are 

assessment, policy development, and assurance. The inputs carry out the core functions 

through processes called public health practices. Inputs are subjected to these processes, 

resulting in outputs, in the form of activities labeled as programs or services. Outputs are 

intended to produce the desired results, characterized as health outcomes. Figure 3 shows 

the framework for public health; it attempts to bridge the gap between what public health 

is and does and how it does this. This framework tends to be very ambiguous and 

abstract, even to those in the medical field; however, most recognize the need for some 

type of formalization. The following sections examine several of the public health 

components in detail. 
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Public Health System 

Purpose and Substance Inputs 

v ir 

Functions —► Practices 

v 

Outputs 

v 
Outcomes 

Figure 3 - The Public Health Framework 

3.2.2.1.     Infrastructure as an Input 

Infrastructure can be described in terms of both static and dynamic attributes. In a 

static representation, the public health infrastructure is the basic building block and 

foundation for public health activities. In a more dynamic representation, the public 

health infrastructure is the capacity or capability of that foundation to carry out its main 

functions. The infrastructure serves as the nerve center of public health and represents 

the capacity necessary to carry out the core functions. 

The infrastructure can be broken down into individual components. Components 

of the infrastructure are human resources, organizational resources, informational 
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resources, and financial resources [Tur97]. The following table summarizes these 

components. 

Human 
Resources 
Organizational 
Resources 

Informational 
Resources 
Financial 
Resources 

Table 3 ■- Public Health Infrastructure Components 

Include the workforce of public health and their knowledge, skills, and 
abilities  
The relationships among the various system participants, public and 
private, and the mechanisms that manage the system practices, 
including their leadership components and collaborative strategies 
Include the various data, information, and communication systems 

The funding levels and sources for the work of public health 

The first of the components is the "workforce" of public health. The 

organizations facilitate the contributions of the workforce. Organizations are groups of 

individuals linked by common goals and objectives. This implies that each organization 

has a specific mission or purpose, resources appropriate to work toward that purpose, the 

ability to determine progress towards its goals and objectives, and defined process for 

making decisions. 

The relationships among the agencies, organizations, institutions, and individuals 

are informal and collaborative rather than formalized and centrally directed. The 

workforce, the organizations, and their leadership rely heavily on information for 

identifying problems, determining interventions, and tracking progress toward common 

objectives. Together, these essential components of the infrastructure formulate the 

system's role in public health. [Tur97] 
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3.2.2.2.     Essential Health Services as Practices 

The following list summarizes the organizational practices that are necessary and 

sufficient to ensure that the core functions of public health are being carried out 

efficiently [Tur97]. 

1. Monitor health status to identify community health problems 

2. Diagnose and investigate health problems and health hazards in the 

community 

3. Inform, educate, and empower people about health issues 

4. Mobilize community partnerships to identify and solve health 

problems 

5. Develop policies and plans that support individual and community 

health efforts 

6. Enforce laws and regulations that protect health and ensure safety 

7. Link people with needed personal health services and ensure the 

provision of health care when otherwise unavailable 

8. Assure a competent public health and personal health care 

workforce 

9. Evaluate effectiveness, accessibility, and quality of personal and 

population-based health services 

10. Research for new insights and innovative solutions to health 

problems 
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3.2.2.3.     Health Care Delivery as a Practice 

The supply of health care resources is another important component of the public 

health system. The growing numbers and types of health delivery systems reflect the 

recent changing environment. Increasing competition, combined with cost containment 

initiatives, has led to the generation of group medical practices, health maintenance 

organizations, preferred provider organizations, ambulatory surgery centers and 

emergency centers. Many of these delivery system have used managed-care strategies 

and methods that seek to control the utilization of services to reduce costs. [Tur97] 

3.2.2.4.     Prevention as a Practice 

One of the most important features of public health is its reliance on prevention. 

Prevention characterizes actions that are taken to reduce the possibility of something 

happening, or minimize the damage if it does happen. Prevention is considered by many 

to be the purpose of public health. 

Prevention intervention strategies are divided into three types: primary, 

secondary, and tertiary [Tur97]. Primary prevention involves the prevention of the actual 

disease or injury, by reducing the exposure or risk level factors. Secondary prevention 

attempts to identify and control disease processes in their early stages, before symptoms 

are apparent. Tertiary prevention seeks to prevent disability by restoring individuals to 

their optimal level of functioning following some kind of damage. Intervention at the 
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primary, secondary, and tertiary levels is a dependant upon knowledge, resources, 

acceptability, effectiveness, and efficiency. 

3.3.    An Overview of the Human Immune System 

Immunology is the study of the body's resistance to invasion by other organisms. 

The immune system uses several layers of defense to protect the body against invaders, 

known as pathogens. Initial barriers to infection are the skin and physiological barriers 

such as pH and temperature. If the pathogens are able to get past these barriers, they 

must be dealt with by another layer of the immune system. This section provides an 

engineer's perspective of this immune system layer by describing system components, 

types of immunity, immunological functions, processes used to perform these functions, 

and challenges to the immune system. 

3.3.1.  Immune System Components 

One of the major components of the immune system is the lymphocyte. These 

white blood cells attack inflamed, infected cells. There are three major types of 

lymphocytes involved in the immune response. Two of these cell types are "born" as the 

same type of lymphoid cell and later differentiate in separate areas of the body. One line 

matures in the thymus and is referred to as a T cell, while the other line matures in the 

bone marrow and is called a B cell. These two types differ greatly in function, yet both 
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have a similar purpose: to recognize and react to specific pathogen targets in the body. 

Lymphocytes are constantly circulating in the bloodstream and the lymphoid tissues, 

allowing a rapid sampling of all cells that might possess "receptors" for pathogens, or the 

ability to "bind to" pathogens. 

Antigen-presenting cells (APC) are the third type of lymphocytes that participate 

in the immune response. Although these cells do not have receptors as the T and B cells 

do, they are still actively involved in the immune process. Their function is to "process" 

the pathogen from inside a cell, and "present" it on the surface, making the pathogen 

"visible" to the T and B cells [BSL96]. The following table summarizes the 

responsibilities of these three types of lymphocytes discussed in the following sections. 

Table 4 -- Immune System Lymphocytes 

B Cells 

T Cells 

APC Cells 

Responsible for the production of antibodies, which enhance and activate 
various capabilities of the immune system 
Responsible for regulating antibody production and cellular immune 
reactions, and killing infectious cells 
Responsible for processing and presenting antigens on the cell's surface 
for recognition by other immune cells 

3.3.1.1.     B Cells 

These cells develop in the bone marrow and produce antibodies, or protein 

molecules that enhance and activate various capabilities of the immune system. 

Antibodies mark infected cells for attack by other immune cells. This is the simplest 

immune response, yet very rapid and effective. Additionally, B cells mediate the immune 

response. Cells develop through the process of negative selection whereby they die 
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unless they receive the "survival signal" from the environment. The "survival signal" is 

produced only when the antibodies do not react to the body. [WeC93] 

Each B cell carries the antibodies on its surface that detect a unique antigen. 

After being stimulated by both antigens and T cells, they may return to the bone marrow 

to undertake their final maturation. Mature B cells do not secrete antibody, but instead 

differentiate into antibody-secreting plasma cells during antigen stimulation [WeC93]. 

B cells have three purposes: serve as the first line of defense against pathogens, 

specialize in neutralizing toxins, and secrete mucus to help create a barrier against 

infectious agents [Nos93]. 

3.3.1.2.     T Cells 

T cells develop in the thymus and are responsible for regulating antibody 

production and cellular immune reactions, and killing infectious cells. While in the 

thymus, these cells undergo a rigorous elimination process, akin to "boot camp." 

Developing T cells are exposed to self: those that do not react to self may leave the 

thymus and take up residence throughout the body [WeC93]. Otherwise, they are 

eliminated. 

There are two types of T cells: CD4 (helper or inflammatory) and CD8 (killer). 

The CD4 cells promote inflammation and signal other T cells to multiply. They also help 

B-cells by signaling an infection. CD8 cells are able to "punch holes" into the target cell 

and inject it with chemicals, killing the infected cell. 
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T cells differ from B cells in the kind of antigen they recognize and in the way 

they recognize an antigen. T cells are unable to recognize the entire antigen, but instead 

can recognize fragments of antigens, known as peptides. [Nos93] 

3.3.1.3.     Antigen Presenting Cells (APC) 

The third type of lymphocyte is the antigen presenting cell, which processes and 

presents antigens to helper T cells. APCs include various types of lymphocytes, mainly 

B cells, macrophages, which "ingest" infected cells, and dendritic cells. These cells take 

in antigens and break them down, so fragments of the antigen can be brought to the cell's 

surface. These fragments are carried to the surface by MHC proteins. 

Major Histocompatibility Complex (MHC) is a set of proteins present in all cells 

that bind to peptides produced within the cell and bring them to the cell surface, where 

they can be recognized by the immune system. An important feature of MHC is a groove 

in its structure, which enables the protein to bind to a wide range of antigenic peptides. 

When the invader replicates inside a cell, MHC carries the short peptide chains from 

those viral proteins to the cell surface. The patterns of these peptides are called epitopes, 

which allow for the detection of multiple pathogens by a single lymphocyte. During an 

immune response, the presence of these foreign peptides in the MHC groove tells the 

immune system that the cell is infected. [Jan93] 
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3.3.1.4.     Complement 

In addition to the three types of lymphocytes, the body utilizes other components 

to fight off infection, such as the complement system. Complement is a group of at least 

11 proteins that circulate in the blood in an inactive, non-functional form. This system 

"complements" the activity of the antibodies in destroying bacteria, either by easing 

phagocytosis, or "eating of infected cells," or by puncturing the bacteria cell wall. It is an 

essential player in the adaptive immune system because it entails the production of 

molecules that influence cellular immune mechanisms. 

3.3.2.   Types of Immunity 

"Immunity refers to all the mechanisms used by the body as protection against the 

environment agents that are foreign to the body" [BSL96]. Examples of agents, or 

pathogens are toxins, pollen, drugs, viruses, bacteria, and parasites. Pathogens can infect 

cells through two methods: the pathogens are found within the membrane based 

organelles through which they entered, or the pathogens gain access to the fluid part of 

the cell and the cell nucleus. Viruses are the most common intracellular pathogens. The 

body uses two types of immunity: innate and adaptive. 

56 



3.3.2.1.     Innate 

Innate immunity represents the part of the immune system present at birth, and 

helps the body "resist infection through normal body functions." It includes body 

surfaces, internal components, and other physiological barriers such as the skin, mucus 

membranes, pH and temperature. All of these elements affect pathogens directly or 

encourage other immune responses. This is a static system, unable to adapt to new 

invaders. One of the main components of innate immunity is the macrophage cell, 

responsible for the ingestion of foreign invaders. 

The innate immune system is responsible for providing a barrier against infection 

and detection of extracellular infections. These infections occur when the pathogen is 

not yet bound to a specific cell in the body. The body defends against these infections 

through a multilevel defense that includes: phagocytosis of bacteria and other invaders 

by white blood cells and cells of the tissue macrophage system; destruction of organisms 

by the acid secretions of the stomach and by the digestive enzymes; resistance of the skin 

to invasion by organisms; and, presence in the blood of certain chemical compounds that 

attach to foreign organisms or toxins and destroy them [Guy81]. 

The innate immune system generates detectors such as macrophages and the 

complements. Since these detectors are not specific, there is no need for them to undergo 

a process of testing for reaction against self. The complement component of the innate 

immune system detects by an affinity to chemically react with bacteria. This reaction 
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coordinates the complement system with the macrophages by signaling the macrophage 

to destroy the bacteria [RBM98]. 

3.3.2.2.     Adaptive 

Adaptive immunity enables the body to recognize and respond to previously 

unseen invaders. This is one of the most powerful capabilities of the immune system. 

Immunity is learned upon contact with the offending pathogens. Once an invader has 

been detected in the body, immune cells activate to learn the structure of and destroy the 

pathogen. An important feature of adaptive immunity is the body's ability to remember 

previous invaders allowing a faster response time upon subsequent encounters with the 

same pathogen. 

The response begins with the B cells circulating throughout the bloodstream. The 

antibodies present on their surface have a high affinity to bind to specific antigens. When 

a B cell confronts its matching antigen, the antibodies on its surface bind to the antigen. 

Detection is founded upon recognizing epitopes. Following detection, the complement 

system is activated to destroy the antigen with the help of macrophages. Additionally, 

the B cell replicates with a large number of mutations. Through the process of natural 

selection, those B cells possessing the best antigen detecting capabilities are stored in 

immunological memory for future defense. 

The adaptive immune system requires an elaborate generation process to produce 

detectors. The output of this process is a collection of cells that individually detect a few 

58 



pathogens but collectively provide the capability to detect numerous pathogens. 

Detection of the antigen occurs through different methods dependent upon whether the 

pathogen is extracellular or intracellular. 

As discussed previously, extracellular infections are normally handled by the 

innate immune system. One of the primary activities of the adaptive immune system is 

eliminating intracellular infections. 

When the pathogen gains access to the inside of the cell, MHC binds to the 

pathogen and moves it to the cell surface, where it is detected by B cells or helper T cells. 

Once the immune response begins, the helper T cells secrete chemicals called cytokines. 

These chemicals activate additional B and T cells, amplifying this cell mediated immune 

response [Elg96, Pau93]. The binding between the pathogen fragments and the 

lymphocyte is the first of two coordinating signals necessary for an immune response. A 

second signal is used to activate killer T cells. Killer T cells destroy the infected cell by 

eliciting apoptosis, a process that forces the cell to kill itself. Killer T cells can also 

release chemicals called cytokines that limit viral replication within a cell while the cell 

attracts macrophages and other phagocytes to destroy the cell. 

Table 5 - Types of Immunity 

Innate 
Immunity 

Adaptive 
Immunity 

Represents the static part of the immune system present at birth and 
provides a barrier against infection and detection of extracellular 
infections 
Enables the body to recognize and respond to previously unseen invaders 
and eliminates intracellular infections  
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3.3.3.  Functions 

The immune system performs several functions in order to defend the body 

against invasion. 

3.3.3.1.     Detection 

The immune system protects the body through the detection of nonself patterns. 

The immune system's detection capability is very powerful since it is highly distributed, 

detects previously unseen invaders, and does not require an exact match between detector 

and pathogen. Lymphocytes circulate throughout the body and bind to foreign invaders, 

initiating the immune process. The immune system utilizes a distributed system of 

millions of detectors to fight invaders. The detection problem is a hard problem since 

there are on the order of 106 self patterns to distinguish from 1016 nonself patterns 

[FHS97]. 

3.3.3.2.     Adaptation 

The immune system incorporates mechanisms that enable lymphocytes to learn 

the structures of specific foreign proteins; essentially, the immune system evolves and 

reproduces lymphocytes that have high affinities for specific pathogens. The immune 
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system adapts through a process called affinity maturation, which is essentially a process 

of mutation and selection [Zin96]. 

When a B cell is activated by binding to a pathogen, it secretes antibodies, 

inactivating pathogens or identifying them to other innate system defenses for 

elimination. After this binding, the B cell hypermutates, creating additional receptors. 

The immune system is constantly adapting through slight variations of successful 

receptors in pursuit of the most effective immune response [Jan93]. All B cells compete 

for available pathogens, with the highest affinity B cells being the "fittest" and replicating 

the most. 

3.3.3.3.     Memory 

The body remembers previously seen invaders, speeding up the response to 

subsequent encounters. The first time an invader is encountered, the body launches a 

primary response that learns the structure of the pathogen. The immune system stores 

this knowledge in memory cells. Subsequent invasions result in the activation of these 

memory cells, providing a very specific and rapid response. 

Table 6 - Immune System Functions 

Detection 

Adaptation 

Memory 

The ability of the immune system to recognize nonself utilizing lymphocytes 
circulating throughout the body 
The ability of the immune system to learn the structures of specific 
pathogens; the immune system evolves and reproduces lymphocytes that 
have high affinities for these pathogens  
The ability of the immune system to efficiently and effectively remember 
previously seen invaders and speed up the response to subsequent 
encounters     .^^— 
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3.3.4.  Human Immune Processes 

Innate and adaptive immunity have common processes that are used as a 

framework for a model of the immune system: generation, detection, coordination, and 

destruction. During the generation process, the immune system creates all its antigenic 

detectors through random mutations and combinations of genetic material. Those 

detectors that are not self-reactive are released into the body. During the detection 

process, detectors move about the body attempting to determine the existence of nonself. 

The immune system provides a highly distributed detection system with local 

coordination. Coordination is required to ensure that the proper immune response is 

taken following detection of the pathogen. The immune system uses various signals and 

chemical attractions to coordinate the components of the immune system. The main 

function of the immune system is to destroy invaders. Destruction can occur through 

ingestion of the invader by immune cells, inducing the pathogen to kill itself, ingestion of 

infected cells, and other processes. Destruction also occurs through the creation of 

inhospitable environments for pathogens through pH, temperature and mucous. 

Table 7 ~ Immune System Processes 

Generation 

Detection 

Coordination 

Destruction 

The process of creating antigenic detectors through random mutations 
and combinations of genetic material 
The process of detectors moving about the body attempting to determine 
the existence of nonself 
The process of implementing the proper immune response following the 
detection of a pathogen 
The process of eliminating the invader by immune cell and other 
processes 
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3.3.5.  Autoimmmunity 

While the immune system usually protects us against foreign invasion, sometimes 

the recognition capabilities falter, causing the body to make antibodies and T cells that 

attack self. This process is called autoimmunity. 

Autoimmunity may be caused by an abnormal immune response to normal self- 

antigens, a normal immune response to abnormal self, or an abnormal immune response 

to abnormal self. Two major mechanisms lead to autoimmunity: a change of self, leading 

to the formation of new antigens, and exposure to antigens that induce cross-reactive 

antibodies [BSL96]. Other conditions can also lead to autoimmunity, such as a decrease 

in killer T Cells or helper T Cells, a dysfunctional MHC presentation of peptides on a 

non-APC, problems with lymphocyte production, and genetic and hormonal factors 

[Ste93]. 

Autoimmune diseases are either organ-specific or systemic and are a consequence 

of a dysfunction in adaptive immune system, caused by self-reacting T cells or 

antibodies. Autoimmunity may also be induced by exposure to antigens bearing a close 

structural resemblance to normal tissue components, called antigen mimicry. In this case, 

damaged is caused when the immune system cross-reacts with the normal tissue that has 

been mimicked. 

63 



3.4.    Computer Immune System Research 

As the complexity of computer systems increases to a level comparable to 

biological systems, an analogy between computer systems and immune systems is 

possible. Computer scientists hope that in studying the human immune system, new 

solutions will emerge to computer viruses and other security problems. Beneficial 

properties of a computer immune system include: detection of a virus in the host, 

isolation of the virus and classification based on its characteristics, location of infected 

resources within the host, repair of any damaged host resources, and storage of 

information on previously encountered viruses [MVL98]. 

Current immunologically inspired research investigates different methods of 

detection. One method built a computer immune system to detect computer viruses 

across hosts connected to a network. Another research group used a computer immune 

system for network intrusion and virus detection, by monitoring system calls to detect 

intrusion. This same group also studied the generation of detectors modeled after the T 

cell generation of the human immune system. A third group defined a distributed 

architecture for a self-adaptive computer virus immune system, and described the role of 

evolutionary algorithms and performance of intelligent agents in this system. Finally, 

another approach investigated information survivability, utilizing the public health 

infrastructure as a model for a computer immune system. 

The following sections expound upon these different approaches and their 

respective models. Since the last portion of this chapter combines advantageous 
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properties from each of the research areas to form a different computer immune 

approach, these characteristics will be noted throughout the sections. 

3.4.1.   The Digital Petri Dish 

Jeffrey Kephart and Steve White conducted research at IBM Thomas J. Watson 

Research Center [KSCW97], developing a computer immune system to detect computer 

viruses across hosts connected to a network. In their system, each networked PC 

analyzed potentially infected files, and sent suspected infected files to a central computer. 

The detection methods employed by the computers modeled the human immune system. 

Detectors were generated in large numbers, and those known to flag abnormal activity 

were replicated throughout the system, much like immune cells with receptors matching a 

given antigen are stimulated to reproduce themselves. This provided stronger selection 

for good recognizers and increased the chance of generating computer immune cells that 

are matched to a particular invader. 

In their system, when one of the networked PCs receives a suspected "infected" 

sample, it sends the file to another computer that acts as a "digital petri dish." A software 

program on this computer tricks the virus into infecting a "decoy," bringing the viral code 

out of hiding [KSCW97]. If a virus is detected, a signature is extracted through bayesian 

methods, and sent to the infected host and other computers on the network. These 

bayesian methods analyze frequency of byte patterns occurring in infected and uninfected 

files. With a recognizer and a repair algorithm appropriate to the virus, the extracted 
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viral information can be added to the corresponding databases. If the virus is ever 

encountered again, the immune system will recognize it immediately as a known virus. 

Figure 4 shows the petri dish concept. 

A computer with this immune system could be thought of as "ill" during its first 

encounter with a virus. However, on subsequent encounters, detection and elimination of 

the virus would occur much more quickly, for the computer could be thought of as 

"immune" to the virus. 

This computer immune system is desirable and feasible. The technology is being 

integrated with IBM AntiVirus, Symantec's Norton AntiVirus, and Intel LANDesk Virus 

Protect [IBM98]. Most of the necessary components are already in use in one form or 

another, some already exist in IBM AntiVirus itself. Others are presently in use in the 

virus laboratory, for updating the databases employed by IBM AntiVirus to recognize 

viruses and repair infected files. Judging from the relatively low false-positive rate of the 

IBM AntiVirus signatures, the detector algorithm's ability to select good signatures is 

better than can be achieved by typical human experts. 
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Figure 4 - Pictorial Representation of the Digital Petri Dish 

Table 8 -■ Highlighted Features of the Digital Petri Dish 

Advantageous Properties 

Network Connectivity 

Centralized Viral Analysis 

Information Sharing 

Provides more efficient access to virus data and 
detection resources  .^___ 
Allows for easier coordination and less duplication of 
virus information and detection resources  
Provides efficient and effective means for disseminating 
virus information 

Disadvantageous Properties 

Network Connectivity 

Centralized Viral Analysis 

Sensitive infected files are at risk when sent over the 
network; the system is dependant on the availability of 
network   
Dependency is increased; single point of failure exists 

3.4.2.  Improving Computer Security 

Stephanie Forrest and researchers at the University of New Mexico, the Santa Fe 

Institute and Odyssey Research Associates conducted research that examined the 
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similarities between living organisms and computers in order to improve computer 

security. Improvements in intrusion detection can be achieved by designing computer 

systems with some important characteristics taken from the human immune system: 

multi-layered protection; highly distributed detector, effector and memory systems; 

diversity of detection ability across individuals; inexact matching strategies; and 

sensitivity to most new foreign patterns [FHS97]. 

Their computer immune system has the following components: a stable definition 

of self; the ability to prevent or detect and subsequently eliminate dangerous foreign 

activities; memory of previous infections; a method for recognizing new infections; 

autonomy in managing responses; and a method of protecting the immune system itself 

from attack. [FHS97] 

One of the first challenges the team confronted was the determination of self and 

nonself. They wanted their definition of self to be tolerant of legitimate changes, 

including those made to files, caused by adding new software or users, and routine 

activities of the system administrators. However, the system must be able to detect 

unauthorized changes and users, as well as viruses and inside attacks. These conflicting 

requirements were addressed in two supplemental areas of research: intrusion detection 

and distributed change detection. 
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3.4.2.1.     Intrusion Detection System (IDS) 

The IDS approach to security is based on the assumption that a system will not be 

secure, but that intrusions can be detected by monitoring and analyzing system behavior 

[HFS97]. In the network intrusion detection domain, their system is based upon self and 

nonself recognition through anomalous system calls. Each computer's definition of self 

is based upon a baseline analysis of system calls executed by privileged processes in a 

networked operating system. 

Their strategy for the intrusion detection system was to first build up a database of 

normal behavior for each program of interest. Second, during a program's execution they 

scanned traces of system calls that might have contained abnormal behavior, and matched 

the trace against patterns stored in the database. If this trace did not occur in the normal 

database it was recorded as a mismatch, and used to distinguish between self and nonself. 

As in the body, the database of self is unique to each computer. Figure 5 presents the 

main concepts of this system. 
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Figure 5 - Pictorial Representation of the Intrusion Detection System 

The research group constructed these databases, and performed abnormal traces 

for three Unix processes. Their results suggested that short sequences of system calls 

executed by running programs are a good discriminator between normal and abnormal 

operating characteristics. These calls provide a compact signature for normal behavior 

and the signature has a high probability of being perturbed during intrusions. [HFS97, 

FHS97] 

According to the research team, the current system is far from having the 

capabilities of a natural immune system. Besides refining the notion of self on a 

computer, provisions need to be made to allow the concept of self to change over time. 

Much work needs to be done in the area of partial or approximated matching, for the 

team realizes they have no mechanism for self-adaptive learning, as in the case of affinity 

maturation or negative selection in the human immune system. [FHSL96] 
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Table 9 ■- Highlighted Features of the Intrusion Detection System 

Advantageous Properties 

System Specific 

Decentralized Analysis 

Multiple Applications 

The database of self is unique to each computer 
Each system develops its own concept of self and 
adapts accordingly 
Can be used to detect viruses, intruders, or malicious 
users   

Disadvantageous Property 
Lack of Learning I There is no mechanism for self-adaptive learning 

3.4.2.2.     Distributed Change Detection 

This application of immunology borrows from mechanisms involving T cell 

generation and training. T cells have binding regions created through a random process, 

much like random strings could be generated. Since it is possible that these T cells will 

bind to self, they are tested before being leaving the thymus. This entire T cell censoring 

process can be thought of as defining a protected collection of self in terms of its 

complementary patterns of nonself. [FHS97] Figure 6 presents the concept of detector 

generation. 

The research team designed a distributed change detection algorithm which: 

generates of a set of nonself detectors, uses detectors to monitor important data, and 

identifies the location of change when a detector activates [FHS97]. In their computer 

immune system, binding between detectors and foreign patterns is modeled as a match 

between two strings. Self is defined as a set of equal-length substrings, formed by 
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segmenting the data, and each detector is defined as a string of equal length as the 

substrings. 
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Figure 6 -■ Pictorial Representation of the Detector Generation 

This system uses "negative detection," generating detectors for byte patterns not 

previously seen on the host [DFH96]. Detectors are continuously and randomly 

generated, compared against self, and discarded if they match. This approach is easily 

distributed because each detector covers a small part of nonself. A set of detectors could 

be split up over multiple sites. This would reduce the coverage at a given site, but would 

provide better system-wide coverage [FHS97]. To obtain similar results with self 

detectors would be much more expensive, because a complete set of positive detectors 

would be needed at every site, duplicating efforts and requiring much more 

communication between sites. 
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This algorithm is useful for dynamic or noisy data; it is effective for intrusion 

detection, as well as virus detection, the system's original intent. Based on the 

continuous detector generation and evaluation methods, this T cell based system could be 

especially advantageous when used as the adaptive component of a multi-layered 

computer immune system. 

Table 10 -- Highlighted Features of the Distributed Change Detection 

Advantageous Properties 

Distributed Detection 
The approach is easily distributed because each 
detector covers a small part ofnonself; provides better 
system-wide coverage 

Adaptive 
Learning new concepts of self is easy due to nonself 
detector generation and evaluation 

Disadvantageous Property 

Incomplete Set of Detectors 
The randomly generated strings may not cover all 
possible combinations ofnonself 

3.4.3.  Distributed Architecture for a Self-Adaptive CVIS 

Other researchers [LVM98] at the Air Force Institute of Technology are 

investigating a Computer Virus Immune System (CVIS). This system uses the human 

immune system as a model for identifying, attacking, and eradicating viruses from 

computers and networks. Based on an analysis of the requirements of such a system, this 

team proposed a distributed architecture that utilizes Intelligent Agents and Evolutionary 

Algorithms to self-adapt to a constantly changing virus population. 

As pointed out by this research, there are several obstacles to implementing a 

CVIS. Though the human immune system provides a basic model for a computer 
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counterpart, there are many "unmatched" parallels between the two systems. In the 

human immune system lymphocytes are distributed throughout the body and act as 

independent agents in search of invaders. This method has limitations in a computer 

immune system, such as: the number of available system processors, competition 

between tasks for processor time, and bottlenecks in accessing shared resources. 

[LVM98] 

Their proposed CVIS requires distributed control, multi-layer security, diverse 

implementations, and self-adaptation in a dynamic software environment. All system 

activities should be autonomous and applicable to the various architectures of current 

computer systems. [LVM98] 

Another challenge in the accomplishment of this type of system is the 

implementation of an artificial adaptation mechanism. Computer systems lack the 

evolutionary adaptation mechanism as seen in the human immune system. The 

development of several components within the CVIS is required, including virus 

detection, virus purging, and damage repair. This research led to the conclusion that 

computational complexity of such a task would be overwhelmingly difficult for one 

system to handle. 

To overcome these challenges, this AFIT team proposed a multi-level distributed 

architecture with the responsibilities of managing the computational complexity 

associated with implementing this system. This was accomplished through the 

coordination of autonomous agents at three levels: local, network, and global. Each agent 

has a number of goals, a scope of competence, and the ability to collaborate and 

communicate with other agents, objects, and humans. Based on human immune system 
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components, agents represent the following functions: detect, classify, repair, update, 

communicate, help, kill, and suppress [LVM98]. Figure 7 presents a pictorial view of 

this system. 
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Figure 7 ™ Pictorial Representation of the Self-Adaptive CVIS 

Agents at the local level would be responsible for virus detection, virus 

elimination, system repair, and vulnerability analysis. Those agents at the network level 

are characterized by a high degree of interaction; they share many resources and are 
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connected by a network. The network agents' purpose is to classify viruses, disseminate 

information and alert other agents of viral threats. At the global level, attention is given 

to the generation, adaptation and storage of virus information. Once developed, this 

information is disseminated to agents at the lower levels. Evolutionary Algorithms (EAs) 

are used in this CVIS at the global level for resource adaptation. They are used to 

improve the "decoy method" of virus detection, as originally presented by the researchers 

at IBM. The AFIT team's approach uses the networks linked to the CVIS as laboratories 

for virus evaluation. Using EAs enables a single, dedicated platform at the global level to 

mange a large decoy population. 

This research combines previous human immune-based virus fighting efforts with 

the new twist of self-adaptation. The distributed nature of their system spreads out the 

computational burden of immune system tasks, and provides an efficient and effective 

CVIS. 

Table 11 ■■ Highlighted Features of the CVIS 

Advantageous Properties 

Network Connectivity 

Compartmentalized Domain 

Hierarchy of Responsibilities 

Information Sharing 

Adaptation 

A high degree of system interaction through the 
sharing of resources and connection by a network 
System responsibilities are divided among agents; 
agents function independently of each other 
Agents are grouped into different levels and interact 
together to achieve the responsibilities ofthat level 
Provides efficient and effective means for disseminating 
virus information 
Utilization of a learning mechanism to adapt to an ever 
changing virus population   

Disadvantageous Properties 

Network Connectivity 

No Peer-to-Peer 
Communication 

The system is dependant on the availability of the 
network   
Systems at the local level can not communicate with 
other systems at that level 
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3.4.4.  DARPA's Public Health Infrastructure 

The Information Technology Office of DARPA presented research on 

information survivability, in response to the DoD's reliance on highly integrated and 

complex military information systems [Shr96]. Since these systems interoperate with the 

commercial computing infrastructure and rely on many of its components, penetration by 

unauthorized users can be conducted from virtually anywhere and by anyone. The goal 

of DARPA's research was to develop technology to ensure critical information systems 

continue to function adequately when attacked [Shr96]. These are large scale, complex 

distributed systems, many of which were developed without survivability as a prime 

concern. In order to improve current survivability approaches, this team looked to 

biological and social models, especially biological organisms, populations and society. 

The benefits of individual organisms include barriers to infection and immune 

systems, detecting the presence of infection, and attacking and removing the invader. 

Other beneficial qualities of organisms include a redundancy and fault tolerance 

mechanism and homeostatic functions that maintain critical functions under stress. The 

team concluded these same ideas apply at the macro level of populations and societies. 

Collectively, the population is fault tolerant to the loss of individuals, and the species 

evolves based on which individuals survive the best in their environment. DARPA's 

research concentrated in three areas: public health infrastructure, adaptive architecture, 

and variability. 

The Public Health Infrastructure element includes a set of security and 

survivability protocols with the ability to operate with available resources. The 
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infrastructure supports problem solving between components of the system, such as: 

decoys deflecting attack, facilitating detection, and aiding with diagnosis; canaries 

warning of impending danger; and honeypots drawing attack to immaterial subsystems. 

Just as a computer immune system would notice user intrusions into individual 

systems, corruption of data, or anomalous system behavior, this public health 

infrastructure must detect the symptoms of an attack effectively and efficiently. After 

symptoms are detected, the system must be able to disseminate this information rapidly 

and comprehensively. Once a part of the system is identified as infected, it must be 

"quarantined" so as not to infect other parts of the system. If the attacks increase, the 

system must be able to heighten its level of concern and allocate more resources for the 

diagnoses of the attack. As information about the attack is uncovered, vulnerabilities and 

recovery procedures must be relayed throughout the system. 

Many issues accompany the public health model. There are many questions about 

the low-level immune system, especially building detectors, detecting attacks, learning 

anomalous behavior utilizing artificial intelligence, and keeping attack profiles current 

and correct. Issues involving information flow though the public health network include 

information control, method of flow, and methods for notification of attack. 

The Adaptive Architecture element develops technologies that allocate resources 

to critical tasks, allowing the system to function while under attack. This system has a 

highly adaptive architecture to guarantee these functions continue with the loss of 

resources. This element also develops new models of semantic redundancy allowing 

corrupted data to be recovered by inference. 
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The Variability element develops technologies that allow differences between 

individual systems, in order to impede unknown threats. These technologies include: a 

variety of operating system implementations, randomized communication patterns, 

randomized memory layout, randomized allocations and variable operational patterns. 

Uniformity is dangerous; if system vulnerabilities were exploited, all machines would be 

immediately vulnerable. 

These areas of public health infrastructure, adaptive architecture and variability 

together provide a high-level model of a Computer Health System; however, they fail to 

specify the lower-level details of an individual immune system. 

Table 12 -- Highlighted Features of DARPA's Public Health Infrastructure 

Advantageous Properties 

Secure Infrastructure 

Component Communication 

Information Sharing 

Provides a set of security and survivability protocols 
with the ability to operate with available resources 
All components can communicate with all other 
components through the system hierarchy (vertically) 
and peer-to-peer (horizontally) 
Provides efficient and effective means for disseminating 
virus information 

Disadvantageous Properties 

Unspecified Detection 

Unspecified Adaptation 

Unspecified Memory 

The ability of the individual detection system to 
recognize nonselfis unspecified 
The ability of the individual detection system to learn 
the structures of specific viruses and adapt to the 
changing definition of self is unspecified 
The ability of the individual detection system to 
efficiently and effectively remember previously seen 
viruses is unspecified 
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3.5.    The Computer Models 

The final portion of this chapter describes the two computer models developed as 

part of this research, which utilized some advantageous properties of the models 

discussed in the previous sections. The first model is a high level view of a Computer 

Health System, utilizing the public health system as a model. This Computer Health 

System is utilized for virus detection, though could be applied to other security domains. 

This health system includes the second immune model as a component. The second 

model is an individual computer immune system, with the virus detection component, 

MERCURY. 

First, the general characteristics of model building are discussed, as well as the 

different types of models that can be used. Next, the Computer Health System is 

explained, from a high-level perspective of overall requirements and responsibilities. 

Finally, the computer immune system is presented, from a perspective of system 

properties. Throughout this explanation, parallels to the public health system and to the 

human immune system are drawn. 

3.5.1.  Model Building 

The purpose of building a model is to explain observations made at particular 

levels for a given experiment and to possibly serve as a device for predicting what may 

occur at a specified spatial or temporal point of interest [Cas97]. A good model is not 
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required to capture all aspects of the system it represents; rather, it should capture the 

system's essence [MVL98]. The model should be simple, clear, tractable, and relatively 

bias-free [Cas97]. 

Models can be either formal or informal, depending on their description or 

purpose. An informal model describes or represents system observations, components, or 

interactions imprecisely [MVL98]. It can help explain observations, but can't make 

accurate predictions of future ones. Formal models, however, are more likely to have a 

higher predictive power because they are mathematically based and represent the "true" 

system with greater accuracy. A formal mathematical system is a collection of abstract 

symbols with a set of rules expressing how strings of these symbols can be combined to 

form new strings [MVL98]. 

There are also different categories of models based on their purposes: predictive, 

explanatory, and prescriptive. Predictive models enable developers to predict future 

system behavior based on the properties of the system's components and their current 

behaviors. Conversely, the purpose of an explanatory model is to not predict future 

behavior of a system, but rather to provide a framework in which past observations can 

be understood as an overall process. Both predictive and explanatory models are passive, 

whereas the prescriptive model is active. The prescriptive model offers a top-level 

picture of the real world, enabling the developer to vary parameters for analysis. The 

following tables summarize the different types of models. 
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Table 13 ■- Summary of Model Types 

Formal 
Mathematical basis for 
representing the "true" 
system 

Informal 
Describes system 
observations, components, 
or interactions imprecisely 

Predictive 

A prediction of future system   I 
behavior based on the             j 
system's components and        I 
their current behaviors 

Explanatory 

A framework in which past 
observations can be 
understood as an overall 
process 

Prescriptive 
A top-level picture of the real 
world, with the ability to vary 
parameters                             \ 

3.5.2.   Modeling a Computer Health System (CHS) 

The CHS is an informal, explanatory model based on some essential qualities of 

the public health system. Due to the model's informality, not every aspect of the model 

will be explicitly stated. Though many parallels can be drawn between the systems, the 

CHS framework will not present the complete picture or solution. Rather, it is an 

approach to the overall process of detection, prevention, and cure of viruses on computer 

systems. Figure 8 presents the pictorial view of this system, its components, and their 

responsibilities and interfaces. 
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3.5.2.1.     Computer Health System Objectives 

DARPA's research suggests the public health system is a highly robust and 

survivable infrastructure developed to detect, diagnose, isolate, cure, and prevent 

infections. The CHS presented here has the same overall objectives for the protection of 

computer systems against viruses. 

Table 14 -■ Comparison of Health System Objectives 

Objectives of Public Health System 

Detect Human Diseases 
Diagnose Human Diseases 

Isolate Human Diseases 
Cure Human Diseases 

Prevent Human Diseases 

Objectives of Computer Health System 

Detect Computer Viruses 
Diagnose Computer Viruses 

Isolate Computer Viruses 
Cure Computer Viruses 

Prevent Computer Viruses 

3.5.2.2.     Computer Health System Requirements 

Like the public health system, the CHS is a social enterprise that utilizes current 

knowledge in ways that have the maximum impact on the way a computer system 

protects against virus invaders. This system identifies computer virus problems through a 

preventative "team" approach in order to protect, promote, and improve the "health" of 

computer systems, with an emphasis on preventative strategies. The primary goal of the 

CHS is to provide a framework for the globally scoped protection of computer systems 

against virus invaders. Some of the advantageous properties of the previously discussed 
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immune models are included as requirements for the CHS. These requirements also 

improve upon the previously discussed models' shortcomings. 

The CHS functions optimally, yet not solely with network connectivity. This 

connection provides the most efficient access to virus data and detection resources. Due 

to the individual immune systems on each computer, and many paths of connection 

throughout the network, this global system does not possess a single point of failure. 

Therefore, components can function autonomously with limited, or nonexistent network 

capabilities. Using a network connection precipitates the need for a secure 

infrastructure. This includes a set of security and survivability protocols that operate 

with available resources. These protocols ensure the protection of information as it 

traverses through the system's networks. 

The system must provide component communication. All components must be 

able to communicate with all other components of the system. This communication 

includes hierarchical or "vertical" interchanges and peer-to-peer or "horizontal" 

connections. Component communication provides the vehicle for information sharing. 

This provides the essential means for efficiently and effectively disseminating computer 

virus information. 

The system is partly based on centralized viral analysis. Specialized computer 

health agencies and virus experts are responsible for much of the computer health 

objectives. Their main tasks are explained in detail in subsequent sections. This allows 

easier coordination and less duplication of virus information and detection resources. 

Additionally, the system is partly based on decentralized viral analysis. Each individual 

computer immune system develops its own concept of self and adapts to viruses to the 

85 



best of its ability, with the help of global prevention information and self-adaptability 

using MERCURY. 

In addition to these requirements, the system also possesses intervention strategies 

extracted from the public health system. These intervention strategies can be divided into 

three types: primary, secondary, and tertiary. 

In the computer sense, primary prevention involves the prevention of the actual 

virus, by reducing the exposure or risk level factors. This type of prevention includes 

regular disk and system scanning through an antivirus system, and responding to updated 

prevention measures, such as virus updates. Secondary prevention takes place if the virus 

had infected the system. This prevention would detect and control the virus destruction 

in its early stages, perhaps before the virus executed or caused large amounts of damage 

to the system. Tertiary prevention would involve repairing the system by restoring it to 

the optimal level of functioning following an infection. System intervention at the 

primary, secondary, and tertiary levels is a dependant upon the knowledge base of the 

computer immune system, the knowledge base of the virus experts, and the effectiveness 

and efficiency of the virus information transfer between components in the system. 

Primary prevention reduces the number of virus infections, whereas secondary 

and tertiary prevention reduce virus predominance by decreasing the "life" of a virus and 

minimize its effects. As with public health, approaches emphasizing primary prevention 

have greater potential benefit than approaches emphasizing other levels of prevention. 
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3.5.2.3.     Computer Health System Services 

Many of the public health services translate easily into the computer health 

domain. The following chart states a few of the services this global system could 

provide. 

1. Monitor virus status within the network communities 

2. Diagnose and investigate viruses found on computer systems 

3. Inform, educate, and empower users about virus issues and 

PREVENTION! 

4. Mobilize research groups to identify and solve virus problems 

5. Develop policies and plans that support virus detection and prevention 

efforts 

6. Enforce laws and regulations that protect computer systems against 

malicious attacks 

7. Link users and administrators with specialized agencies and virus 

experts 

8. Assure a competent computer health workforce 

9. Evaluate effectiveness, accessibility, and quality of the infrastructure 

and system 

10. Research innovative solutions to virus problems 
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3.5.2.4.     Computer Health System Functions 

As in the public health system, the Computer Health performs three core 

functions: assessment, policy development and assurance. The Computer Health System 

assesses the needs of the computer systems and networks by establishing systematic 

processes that periodically provide information on the status of viruses through the cyber 

community. The CHS also investigates virus hazards in the community by conducting 

research that identifies the magnitude of viral damage, symptoms, and avoidance. The 

CHS must advocate collaborative research efforts, identify resources in the cyber 

community, and generate relationships with public and private agencies for the study of 

viruses. Another function of the CHS is the development of plans and policies 

addressing virus attacks and establishment of goals and objectives that focus on 

preventive measures. The CHS is responsible for informing and educating the users and 

administrators on computer health, promoting awareness about available antivirus 

applications and preventative techniques in order to increase knowledge, attitudes, and 

practices about computer viruses. 
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3.5.2.5.     Computer Health System Components 

Responsibilities are allocated among the four main components of the Computer 

Health System: specialized agencies, virus experts, infrastructure, and individual 

systems. 

3.5.2.5.1.      Specialized Agencies 

Specialized agencies are organizations or research groups that facilitate 

contributions to the virus detection field. These agencies are linked by common goals 

and objectives with the specific mission of some aspect of virus detection or prevention. 

The relationships among the agencies are informal and collaborative rather than 

formalized and centrally directed. The main responsibility of these agencies is to conduct 

research and trend analyses of viruses, and develop useful statistics and metrics. Also, 

they provide a general classification for viruses, and formalize the methods of virus 

detection, extraction, and repair. Lastly, they provide policy guidelines and standards to 

establish goals and assign responsibilities within the Computer Health System. 

The Center for Virus Control (CVC) is a proposed computer health agency based 

on the Center for Disease Control and Prevention. The main goals of the CDC are 

surveillance, applied research, and prevention and control. [OUSD96]. The CVC would 

be responsible for detecting, investigating and monitoring virus threats, and determining 

the factors influencing their occurrence. The agency would be responsible for integrating 
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industry, academia and government research, improving virus security practices. The 

CVC would enhance private and government communication about emerging viral 

threats, and ensure prompt implementation of prevention and control strategies. 

Information dissemination would be a top priority, as would establishing implementation 

standards and guidelines. 

The Virus Prevention Agency (VPA) is a proposed computer health agency based 

on the Federal Emergency Management Agency. The mission of this public health 

agency is to provide leadership and support to reduce the loss of life and property and 

protect our nation's institutions from all types of hazards through a risk-based, 

emergency management program of mitigation, preparedness, response and recovery 

[OUSD96]. Applying this to the computer health domain, the agency is responsible for 

helping network and computer systems defend against viruses, making virus repair 

assistance available to all users, and teaching users and administrators how to protect 

against viruses. 

3.5.2.5.2.      Virus Experts 

Within the public health system, many physicians practice in groups where they 

can share expenses, medical equipment, and responsibility for emergencies. In the public 

health system, group practices, hospitals and other arrangements are called Health 

Service Organizations (HSOs) [Ayr96]. This same technique of pooling resources, 

personnel and knowledge can be applied to the virus expert component of the Computer 
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Health System. In this system the main responsibilities of the virus experts are: 

implementing and teaching preventative techniques, analyzing new viral types, extracting 

and diagnosing new viruses, and "curing" the system once it has been infected. These 

services provided by the virus experts are globally based and are targeted toward network 

systems rather then individual systems. Virus experts may be augmented with automated 

systems such as IBM's digital petri dish or MERCURY. 

3.5.2.5.3.     Infrastructure 

Analogous to the public health system infrastructure, the infrastructure of the 

CHS is the backbone that protects and carries all the information flowing throughout the 

system. The supply of health care resources is an essential concern to the public health 

system; whereas, the supply of information is an important aspect of the Computer Health 

System. The CHS infrastructure provides the following functions: system security, 

information sharing and component interfacing. 

The infrastructure must provide system security through three fundamental 

objectives. Confidentiality requires that the data in a computer system, as well as the data 

transmitted between computer systems, be revealed only to authorized individuals. 

Integrity stipulates that the data in a computer system, as well as the data transmitted 

between computer systems, be free from unauthorized modification or deletion. 

Availability requires that the authorized users of the computer systems and 

communications media not be denied access when access is desired. [WPF96] 
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The infrastructure also provides the CHS requirement of information sharing. 

Information is shared rapidly and comprehensively between agencies and experts, and 

among the population of computer systems. Virus information flows upward when a 

system detects or is infected with a virus and flows downward when a virus cure is 

discovered or preventative measures are formalized. 

The component interfaces throughout the system require interfaces to manage the 

information control, method of flow, and methods for notification of attack. These 

concerns are analogous to the different types of health delivery systems available in the 

public health system. Group medical practices, health maintenance organizations and 

preferred provider organizations are all methods for individuals to "connect" to the public 

health system, just as communication protocols between and within subsystems enable the 

two-way connections between all subsystems and peer-to-peer systems. 

3.5.2.5.4.      Computer Systems 

The final component of the Computer Health System is the individual computer 

system, equipped with a computer immune system. This immune system is similar to the 

human immune system, in that its purpose is to protect the computer system from 

invasion by viruses. The main functions of the individual computer immune system are 

system analysis, virus detection, self-adaptation, memory, and virus elimination/system 

repair. These functions are described in Section 3.5.1. 
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3.5.3.  Modeling a Computer Immune System 

Computer scientists hope that in studying the human immune system, new 

solutions to combating computer viruses will emerge. There are many properties of the 

immune system of interest to a computer scientist. Human immune systems are unique, 

meaning individual immunity is derived and adapted; this is a desirable and applicable 

property of a computer system, as well. The immune system uses an efficient 

decentralized and distributed detection process, which is also of interest in the virus 

detection domain. The human system is also very flexible and does not require the 

absolute detection of every invader; instead, partial detection allows for quicker 

recognition of multiple invaders. This is applicable to partial detection of byte patterns in 

an infected file on a computer system. Another very important feature of the immune 

system is its ability to detect and react to invaders, or nonself, while not reacting to what 

belongs in the body, or self. This property applies to invaders that have been previously 

seen, as well as those previously unseen. The human system can learn and remember the 

structures of these previously unseen invaders, so that the body's future responses to the 

same invader can be faster. [FHS97] 

An individual computer immune system is an informal, explanatory model that 

captures the essence of the human immune system. Due to the model's informality, not 

every aspect of the model will be explicitly stated. Though many parallels can be drawn 

between systems, the computer immune system model will not present the complete 

picture or solution. While the CHS provides the framework for global protection against 

viruses, the computer immune system provides for local detection of these invaders. 
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3.5.3.1.     Functions 

As introduced in Section 3.5.2.4, there are several desirable functions for a 

computer immune system: system analysis, virus detection, adaptation, memory, virus 

elimination, and system repair. MERCURY, a prototype of a virus detection component 

of a computer immune system, is designed to incorporate three of these functions, 

detection, adaptation and memory. The following subsections describe each function, 

and, if appropriate, their design in MERCURY. 

3.5.3.1.1.     System Analysis 

The system analysis function provides local prevention from computer viruses. 

Analysis is individualized through prevention strategies such as policy enforcement, disk 

checking and system scanning procedures, and analysis for viral system calls. 

Additionally, this function provides an analysis of normal system activity, in a manner 

similar to user profiling utilized in intrusion detection systems [WFP96]. Policies and 

procedures are obtained from the specialized agencies and specific preventive measures 

are obtained from the virus experts of the Computer Health System. MERCURY does 

not incorporate system analysis, but can be integrated with existing systems that provide 

this functionality. 
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3.5.3.1.2.     Detection 

Just as antigens can infect cells in the body through two methods, intracellular and 

extracellular, a virus can infect a system in two basic ways. The virus is found within the 

system, such as memory, or boot sector or the virus gained access to the inside of a file. 

Similar to the human system, a computer system detects a virus through different 

methods, dependent upon whether the virus is "extracellular" or "intracellular." 

Extracellular Infections on a Computer. Similar to the multilevel defense against 

infections in the body, behavior blockers raise a warning when suspicious activity occurs 

on the computer. These programs have a sense of typical virus behavior, such as access 

to certain system resources and files, just as certain chemical compounds in the blood 

know to attach to foreign organisms or toxins and destroy them. Behavior blockers use a 

reactive method, since a virus is detected after the computer is infected. 

Intracellular Infections on a Computer. Similar to the lymphocytes circulating in 

the bloodstream looking for pathogens found in the body, a virus scanning program 

would "circulate" through the computer system and compare system and data byte 

patterns to those previously seen patterns maintained in a virus database. In the body, the 

lymphocytes can not see the pathogen "inside" the cell without the assistance of MHC, 

which brings the invader to the cell's surface. In a computer, an infected file does not 

present the infection to virus scanner; instead, the scanner must look inside the file in 

order to determine if a file is infected. 
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The scanning component of MERCURY, though not fully implemented, would be 

responsible for extracting and detecting byte patterns in files. MERCURY'S scanner 

recognizes viruses through an exact match of a relatively short sequence of bytes 

occurring in the virus, or by a rule generated by the learning component of MERCURY 

which specifies a set of bytes, combined using certain operators. Matching a small 

portion of the virus is more efficient in time and memory, and it enables the system to 

recognize variants. 

As a component of MERCURY, a virus scanner was developed to evaluate the 

byte patterns inside files. This scanner functions just as the "team" of lymphocytes 

would in the human body. As the scanner reads the byte patterns in each file, they are 

compared to nonself and self byte patterns stored in the knowledge base. In the body, B 

cells circulate through the body, looking to bind with nonself antigens. If nonself is 

encountered, the cell is flagged as infected, and the "killer" cells are activated. In the 

computer system, if the pattern matches what is known to be a virus, an immune process 

is also initiated. The file is "flagged" and the elimination and repair function of the 

computer immune system is activated. 

3.5.3.1.3.     Adaptation 

Detection involves the recognition of known viruses, whereas adaptation deals 

with previously unknown viruses. In the human immune system, innate immunity 

represents the part of the immune system present at birth. In a computer system, innate 
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immunity can be thought of as what is initially learned, supervised or unsupervised, as 

acceptable system byte patterns and acceptable system activity. These allowable patterns 

and activities could be defined through initial heuristics and analysis. Similar to the work 

done by Forrest, databases of these allowable byte patterns and activities could be 

constructed. 

Adaptive immunity for a computer system, like the human immune system, would 

enable the system to recognize and respond to previously unseen viruses. Once an 

previously unseen byte pattern is encountered in the computer, the system detectors 

determine whether it is a virus or new self, based on the predictive capabilities of current 

definitions of self and nonself. If the system detectors are unable to incorporate the byte 

pattern into these definitions, the system must seek advice from a virus expert. After the 

byte pattern has been identified by the expert, the system incorporates the byte pattern 

into the knowledge base so that it can be recognized quickly on subsequent infections. 

As a component of MERCURY, the constructive induction engine, HEC was 

developed to perform the adaptive function of learning new byte patterns. On a fully 

operational system, once a byte pattern is labeled as self or nonself, HEC would 

incorporates it into the system's concepts of self and nonself, and update the knowledge 

base. As a computer changes, its immune system must adapt. Constructive induction 

provides a mechanism to incorporate these modifications and classify them as self or 

nonself. 
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3.5.3.1.4.     Memory 

A computer system must have the ability to remember previous viruses, allowing 

a faster response time upon subsequent encounters with the same virus. As a component 

of an operational version of MERCURY, a knowledge base could be built that contains 

the byte patterns that distinguish between self and nonself. This knowledge base would 

be accessed by the scanner and updated by HEC. MERCURY'S current implementation, 

however, does not utilize memory external to the constructive induction engine. 

3.5.3.1.5.      Virus Elimination and System Repair 

Once nonself byte patterns have been recognized in a file, the computer immune 

system must respond by enabling the elimination and repair function. This can be 

accomplished by attempting to reconstruct the file from a checksum database repository, 

or by attempting to identify and remove the exact viral code [KSSW97]. While the 

purpose of this computer immune function is analogous to the human immune system, 

the implementation differs. In the human body, cells are expendable, and can be killed 

without affecting the overall function of the system. However, in the computer system, 

files can not be "killed," or deleted with the same degree of indifference. MERCURY 

does not incorporate elimination and repair, but can be integrated with existing systems 

that provide this functionality. 
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3.5.3.2.     Autoimmunity 

While the purpose of this computer immune system is to protect against foreign 

invasion, the recognition capabilities of MERCURY could falter, causing the system to 

classify self as nonself. This process would be similar to autoimmunity in the human 

immune system. 

For example, a common error occurs when the antivirus program reports "false 

positives" on legitimate programs. This results from the current manual techniques used 

to extract virus byte patterns from an infected file. These current antivirus techniques can 

be expected to fail within the next few years with the rapid, accelerating influx of new 

computer viruses. 

Another problem with detecting viruses in a computer system is that the notion of 

self in computers is questionable. Self is not solely the pre-loaded software on a 

computer when purchased. Users are continually updating and adding new software, so it 

would be unacceptable if the computer immune system were to reject all such 

modifications and additions on the basis that they were different from what was on the 

system already. The human immune system can usually get away with "presuming the 

guilt" of anything unfamiliar, whereas the computer immune system must presume that 

new software is innocent until it can prove that it is guilty of containing a virus. [Kep94] 

Autoimmunity could occur in two ways within MERCURY. The scanner could 

detect a previously unseen self byte pattern as nonself. Additionally, if the self and 

nonself files are similar, HEC could learn incorrectly. This could be treated proactively 

or reactively. Proactive treatment would require the user to interface with MERCURY, 
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through the addition of new examples. The reactive treatment involves adding the new 

system files and waiting for the byte patterns in this file to be detected. After the new 

byte patterns are detected, they could be sent to HEC to relearn the self concept. 

Although an important function of a computer immune system, MERCURY does not 

allow for user intervention, but could be modified if needed. 

3.5.3.3.     Computer Immune System Interfaces 

A computer immune system should contain the five functions discussed in the 

preceding sections. MERCURY was designed to incorporate three of these functions, 

detection, adaptation and memory. This immune system decomposition necessitates 

interfaces between MERCURY and the other systems responsible for analysis and 

elimination/repair. Coordination between these systems is required to ensure that the 

proper prevention strategies are used and that the proper response is taken following 

detection of the virus. The body uses chemical attractions and signals to coordinate the 

components of the immune system; the computer immune system must also coordinate its 

functions. 

3.6.    Summary 

This chapter explained several analogies between a computer system and the 

human immune system by presenting several computer immune models. First, 
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discussions of the human immune system and the public health system were presented, 

with research trends in the area of computer immunology addressed. The CHS was 

presented as an informal, explanatory model of the public health system; the computer 

immune system was presented as an informal, explanatory model of the human immune 

system. MERCURY'S role in the computer immune system was defined. Chapters Four 

and Five provide general and detailed descriptions, respectively, of this virus detection 

component. 
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4.      System Design 

4.1.    Overview 

Chapter Two described current methods of virus detection, concepts of 

constructive induction, and research trends utilizing machine learning for computer 

security and detection. This chapter conjoins these areas to form the basis of MERCURY, 

the virus detection component of a computer immune system. 

Chapter Three presented the Computer Health System, a global approach at virus 

prevention, based on the public health system. This approach identified the requirement 

for an individual computer immune system, based on the human immune system. Chapter 

Four focuses only on MERCURY and the design fundamentals of this virus detection 

system. 

The methodology provides a framework for MERCURY by defining the 

objectives, requirements, and architecture of a fully operational detection system. The 

major subsystems and processes involved are decomposed and system integration and 

testing are addressed. The detailed descriptions of the subsystems and processes included 

in the implemented prototype of MERCURY will be provided in Chapter Five. 
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4.2.    General Description 

A system is a set of interrelated systems, or subsystems, working together toward 

some common objective [B1F90]. MERCURY is a virus detection system, composed of 

a virus scanner, a constructive induction based learning engine named HEC, and a 

knowledge base. This implementation is a proof-of-concept; HEC is a model of the 

learning process that provides the scanner with byte signatures that distinguish between 

self and nonself. This system tests the hypothesis that constructive induction can be 

effectively applied to the virus detection domain. 

4.3.    Objectives 

An effective system engineering process begins by identifying a need, based on a 

want or desire for something, possibly arising from a deficiency [B1F90]. Current viral 

detection techniques are reactive, labor intensive for virus researchers, have a slow 

response from time of discovery until the cure is prescribed, and require user intervention 

to update the virus signature database [Kep94]. Due to these recognized inefficiencies, 

the need was identified for an improved technique that combats these virus detection 

problems. 

Once the need is identified, system objectives must be explicitly defined and 

understood so that the system provides the desired output for each given set of inputs. 

The objectives of this detection system match the three most prominent functions the 

human immune system uses to defend the body against invasion. The objectives of 

103 



MERCURY are to: detect viruses, adapt to changes in self through learning, and 

remember previously seen viruses. 

Table 15 -- MERCURY'S Objectives 

Detection 

Adaptation 

Memory 

The ability of the detection system to recognize nonself 
The ability of the detection system to learn the structures of specific 
viruses; the detection system adapts to the changing definition of self 
The ability of the detection system to efficiently and effectively remember 
previously seen viruses, speeding the response to subsequent encounters 

4.4.    Requirements 

Once system objectives are determined, specific requirements of the system must 

be defined. Requirements are decided prior to development so that expected system 

outputs are known and can be tested [B1F90]. A full implemented version of MERCURY 

should meet the following requirements: 

1. Detect previously seen self in the system 

2. Detect previously seen nonself in the system 

3. Isolate and flag previously unseen files in the system 

4. Send indiscernible files to virus experts 

5. Relay virus information to the constructive induction engine for self- 
adaptation and learning 

6. Update the knowledge base of virus signatures base on new concept of 
self 

7. Send information about damaged files to the cleaner subsystem, 
outside of the MERCURY system 
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4.5.    Architecture 

After the system requirements are established, they are utilized to choose a design 

approach [B1F90]. Choosing a system architecture is a design approach that defines a 

system in terms of components, interactions and correspondence to system requirements 

[ShG96]. Implementing a particular architecture benefits the system's development and 

maintenance by defining the commonalties, identifying areas of reusability, and 

communicating the design to others. Architectures can be chosen by analyzing the 

applicability of different architectures and system requirements. 

MERCURY'S requirements involve collecting, manipulating, and preserving 

large bodies of complex virus information; overall, the system exhibits many qualities of 

a shared information system. This architecture supports independently processing 

subsystems interacting through a shared data store. When fully implemented, 

MERCURY subsystems would act independently; HEC and the virus scanner would each 

have processes that run autonomously within their respective subsystems. These 

subsystems would interact through a central knowledge base of virus information. 

The definition of a system is not complete without considering its position in a 

larger, higher-level system. A virus detection system, such as MERCURY, would be a 

component of a individual computer immune system. This computer immune system is a 

component of the Computer Health System, designed and explained in Chapter Three. 

These systems protect computer systems against viruses through the detection, diagnoses, 

isolation, cure, and prevention of virus infections. 
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An individual computer immune system is responsible for system analysis, 

detection, adaptation, memory, and virus elimination/repair. MERCURY encompasses 

the functions of detection, adaptation, and memory, interfacing with the system analysis 

and virus elimination/repair components. Within MERCURY, there are three 

subsystems: virus scanner, constructive induction engine (HEC), and the knowledge base. 

The simplified view of the Computer Health System, and MERCURY'S position within 

it, are depicted in Figure 9. 

4.6.    Description of Subsystems 

The following sections describe MERCURY'S three subsystems, by providing 

their general descriptions, and defining their objectives, requirements, and architecture. 

4.6.1.   Constructive Induction Engine (HEC) 

HEC is a software program developed as the constructive induction based 

learning engine. HEC is needed to drive the learning process for MERCURY, enabling 

the system to learn the definition of self and nonself and adapt to changes. The 

objectives of a constructive induction engine are to: generate, order, evaluate, and 

incorporate hypotheses [Gun91]. Hypothesis generation involves the creation of 

hypotheses based on predetermined rules and operators. Hypothesis ordering serves as a 

filter, identifying the most and least promising hypotheses. Hypothesis evaluation tests 
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Figure 9 - System Hierarchy 

hypotheses to see if the goal of the system is achieved through their use. Hypothesis 

incorporation integrates the hypotheses determined to work properly into the rule base. 

With these subsystem objectives determined, the specific requirements and 

expected outputs of a fully operational version of HEC are defined as follows: 
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1. Read-in a set of files identified as nonself or self 

2. Use selective induction methods to generate all possible hypotheses 
from these files 

3. Order and evaluate these generated hypotheses based on their abilities 
to distinguish between self and nonself 

4. If generated hypotheses do not distinguish between self and nonself 
with a desired level of accuracy, use constructive induction methods to 
construct new hypotheses 

5. Order and evaluate these constructed hypotheses based on their 
abilities to distinguish between self and nonself 

6. Iterate through the constructive induction process until accepted level 
of accuracy is obtained 

7. Output an accepted set of detectors, based on the hypotheses which 
best define the concepts of self and nonself   

System architectures may be further refined as architectural subsystems. These 

subsystems are often developed independently, so they can be reused in different contexts 

[ShG96]. Similar to its "parent system," HEC exhibits many qualities of a shared 

information system since its main responsibilities are collecting, manipulating, and 

preserving large lists of byte pattern information. The processes of this subsystem that 

manipulate hypotheses are independent of each other, run in a fixed sequence until 

completion, and pass the hypothesis list to the next process for computation. 

4.6.2.   Virus Scanner 

The virus scanner subsystem is needed to scan system files for viruses. The 

scanning method of virus detection was chosen over the other antivirus methods due to its 
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ease of programming, modifiability, and function. Its simplicity is best suited for this 

proof-of-concept design to improve virus detection. The objectives of the virus scanner 

are to: scan system files for nonself, accept previously seen self, reject previously seen 

nonself, and flag previously unseen byte patterns, which could represent nonself. 

With system objectives determined, specific requirements and expected outputs of 

a fully operational virus scanner, within MERCURY, are defined as follows: 

1. Read byte patterns from system files 

2. Access the byte patterns maintained in the knowledge base 

3. Compare system byte patterns to those in the knowledge base 

4. Accept files with self byte patterns from the knowledge base 

5. Reject files with nonself byte patterns from the knowledge base 

6. Question files with byte patterns not contained in the knowledge base 

7. Send questionable files to the virus expert 

The expected output from this subsystem is a decision to accept the file as self, 

reject the file as nonself, or flag the file as indiscernible, based on current knowledge. 

The virus scanner follows the organization of a main program/subroutine 

architecture [ShG96]. The main program acts as the driver for the subroutines, providing 

a control loop for sequencing through the subroutines in a defined order. The virus 

scanner calls a read subroutine, which inputs all signatures from the knowledge base, 

then calls a locate subroutine, which finds all the files in system to be compared. Finally, 

it calls a compare subroutine, which compares the system file byte patterns to those in the 

signature list. 
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4.6.3.   Knowledge Base 

If fully implemented, MERCURY would utilize a knowledge base, or data 

repository that maintains all byte patterns used to define the concepts of self and nonself. 

This subsystem is needed to store and transfer information between the learning engine 

and the virus scanner. The objectives of the knowledge base are to maintain byte 

patterns, to accept data input from the constructive induction engine, and to provide 

signature access to the virus scanner. The specific requirements of the knowledge base 

are the ability to: 

1. Maintain the data in the form of a signature list 

2. Accept inputs from HEC in the form of a list of detectors 

3. Provide read-only access to the virus scanner 

The expected output from this subsystem is a database of signatures. The 

knowledge base does not generate any actions on its own, but instead responds to 

requests to store and access data. 

4.7.    Dynamic Structure of MERCURY 

A system can be understood by examining its dynamic structure, which represents 

control information such as events, states, and operations occurring within a system. An 

event is a signal that something has happened. A state represents the system in the 

interval between events and specifies how events are interpreted. A transition between 

states represents the response to an event and may include actions and events to send to 
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other system components. A transition may also contain guard conditions, which control 

whether a transition is allowed to occur. An action is an automatic operation in response 

to an event; one type is sending an event outside the system. A state diagram is a graph 

of states and transitions labeled by events. [RBP91] 

The overall dynamic structure of a fully implemented version of MERCURY is 

depicted in the state diagram in Figure 10. The current prototype of MERCURY does not 

fully encapsulate this dynamic structure. This research was concerned with developing a 

proof-of-concept of the applicability of constructive induction to this domain. Therefore, 

development efforts focused on the inductive learning foundations of HEC. 

The first state of MERCURY is "scanning the system for viruses." While 

scanning, if MERCURY encounters files with known byte patterns of self that are 

contained in the knowledge base, it continues. If MERCURY encounters files with at 

least one known nonself byte patterns it sends the "eliminate and repair message" to the 

elimination/repair system and continues scanning. If MERCURY locates a file with no 

byte patterns from the knowledge base, it sends the "identify file message" to the virus 

expert system and continues scanning. Once the virus expert has classified the file as self 

or nonself, MERCURY sends the classification and the file to the induction engine 

(HEC). MERCURY also sends the "eliminate and repair message" to the 

elimination/repair system if the file was identified as nonself. While the system 

continues to scan for other nonself files, HEC relearns the concept of self. It remains in 

this state until the learning process is complete and the new list of detectors is formed. 

This research assumes that learning will be possible with the given methods of 

selective and constructive induction. There may be cases when learning is not possible, 
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such as inconsistencies in the classification of examples. Once this process is complete, 

MERCURY enters the "update knowledge base" state of the system. During this state, 

scanning temporarily stops and the knowledge base accepts inputs from the induction 

engine, updating its signature list. Once the update is complete, MERCURY re-enters the 

"scanning the system for viruses" state and continues scanning for viruses, utilizing the 

new signature list. 

Event:      Encounter known self OR nonself 
Guard:     At least oneße byte pattern in knowledge base 
Action:     Continue scanning 
Send:       "Eliminate and repair message" to the cleaner 

system if file is nonself 

Event: Encounter previously unseen resource 
Guard: No file byte patterns in knowledge base 
Action: Continue scanning; Await instructions 
Send: "Identify file message" to expert system 

Event:      Update complete 
Action:     Continue scanning 

/ 

Scanning System 
and Awaiting 

Response 

Updating 
Knowledge Base 

\ 
Event:     Identity of indiscernible file determined 
Action:     Send Information about file to 

induction engine (HEC); Continue scanning 
Send:        Alert Cleaner resource if file is nonself 

z 
Event: Learning process complete 
Action: Send updated information 
Guard:     Detector List formed 

\ ^L 
Scanning System 
and Relearning 
Concepts of Self 

and Nonself 

T 
Event: 
Guard: 
Action: 

Learning process not complete 
Detector List not formed 
Continue learning; Continue scanning 

Figure 10 -- MERCURY'S Dynamic Structure 
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To further understand the dynamic structure of MERCURY it is helpful to study 

the dynamic structure of MERCURY'S main component, HEC. The dynamic structure of 

HEC is depicted in the state diagram in Figure 11. The current prototype of HEC does not 

fully encapsulate this dynamic structure. This research was concerned with developing a 

proof-of-concept of the applicability of constructive induction to this domain. This 

prototype is not optimized enough to be utilized in a fully operational system. 

Additionally, the "constructing detector list" state is not implemented. 

The first state of HEC is "gathering examples." In this state, the engine reads in 

byte patterns from the provided example files identified as self or nonself. Next, HEC 

enters the "generating hypotheses based on selection methods" state, where it forms a list 

of hypotheses using predefined methods of selective induction. Once this hypothesis list 

is complete, the system begins "evaluating and ordering hypotheses." This state tests and 

ranks the ability of the hypotheses to distinguish between self and nonself, given as a 

score. This score, which measures the ability of the hypothesis to classify many 

examples correctly, is discussed in Section 5.3.2. If one or more hypotheses produce an 

acceptable score, the system generates a signature list, based on these hypotheses and 

enters the "constructing detector list" state. The system utilizes this list to update the 

knowledge base and redefine the concepts of self and nonself. If the hypothesis or 

hypothesis group does not produce an acceptable score, HEC enters the "formulating 

hypotheses based on construction" state, where it forms new hypotheses through 

constructive induction methods. These hypotheses are formed by combining previously 

generated hypotheses, using a predefined set of operators. After the combinations are 

complete, a constructed hypothesis list is passed back to the "evaluating and ordering 
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hypotheses" state, where the score for each new hypothesis is tested and compared. HEC 

will continue to construct and evaluate hypotheses until it achieves acceptable score or 

until the system times out. All design considerations are discussed in Chapter Five. 

Event: Read Byte Patterns From Files 
Action: Append Example list 

(•> 
Gathering 
Examples 

Event:  All Examples Gathered 
Action: Pass Example list 

Generating 
Hypotheses 
via Selection 

Methods 
v J 

Event:  Last Hypothesis Generated 
Action: Pass Generated Hypothesis list 

Event:  All Hypotheses Ordered 
Guard: Score Unacceptable 
Action: Pass a Hypothesis List 

Evaluating and 
Ordering 

 ►/ 

Hypotheses 

V 

Formulating 
Hypotheses via 
Construction 

Methods 

Event:  All Hypotheses Ordered 
Guard: Score Acceptable 
Action: Pass Hypothesis List ^ 

Event:   All Hypotheses Constructed 
Action: Pass Constructed Hypothesis list 

Constructing 
Detector 

List 

Event:  List Complete 
Action: Update Knowledge Base 

Figure 11 -■ HEC's Dynamic Structure 

114 



4.8.    Description of Data Flow 

In addition to understanding the dynamic structure of MERCURY, it is also 

important to recognize the flow of data through a system. The data flow diagram in 

Figure 12 provides an overall view of the system by presenting the origination and 

destination of data and the processes that transform them [RBP91]. It shows the 

sequences of the transformations performed, as well as the external systems affecting the 

computation. Processes are depicted as circles, dataflows are depicted with arrows, and 

data stores are depicted with parallel lines. The current prototype of MERCURY does not 

fully implement this data flow. HEC does not fully interactive with the knowledge base 

and scanner, data flow is constrained within this system. Additionally, this design 

includes an incremental learning mechanism, which has not been incorporated into HEC. 

An operational version would complete these interactions. 

MERCURY'S first process scans the system by comparing known byte patterns 

from the knowledge base to byte patterns from files in the system. The next process 

determines if an unclassified file is self or nonself, through a virus expert system. Once 

the file has been identified as self or nonself, the file and the virus expert's classification 

are transferred to HEC. This adaptive component will induce a detector for the file that is 

consistent with the existing definitions of self and nonself. Upon completion of this 

process, the new detector is transferred to the knowledge base, in the form of byte 

patterns. 
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■ System Files Virus Expert 

Figure 12 -- MERCURY'S Dataflow Diagram 

4.9.    System Integration and Testing 

The high-level integration of MERCURY involves matching the inputs to outputs 

between the major subsystems: HEC, virus scanner, and knowledge base. This 

integration step is necessary for the operational version of MERCURY. The virus 

scanner must be able to access the byte patterns in the knowledge base. The virus 

scanner and the inductive engine must be to communicate through the virus expert and 

the knowledge base. Figure 13 loosely describes the exchange of data between the 

subsystems, depicted as black boxes, with notional inputs and outputs. 
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Figure 13 -- MERCURY'S Integration 

Testing of the fully operational version of MERCURY should occur in several 

phases. First, each of the subsystems should be tested as independent units, to assure 

individual requirements were met.   Once each unit is determined to function properly, 

each of the three interfaces should be tested: HEC's interface with the knowledge base, 

the virus scanner's interface with knowledge base, and virus scanner's interface with 

HEC, through the virus expert. After this testing is complete, the entire system should be 

tested. While testing the system, the following should be considered: 
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1. Overall system objectives and requirements were met 

2. Subsystem objectives and requirements were met 

3. System and subsystem outputs are valid 

4. System and subsystem processes operate accurately and efficiently 

5. Data integrity was maintained throughout the system 

4.10. Summary 

The Computer Health System, presented in Chapter Three, identified the need for 

an individual computer immune system. This chapter focused on its main component, 

MERCURY. The design presented here provided a high-level description of an 

operational version of MERCURY, by defining its objectives, requirements, and 

architecture, the major subsystems and processes involved, and their integration and 

testing. Deviations between this proposed design and the prototyped implementation 

were noted. 

An important aspect addressed in this chapter was the dynamic structure of 

MERCURY, detailing the system states and the sequences of actions and events with 

trigger transitions. Within MERCURY, there is a constant flow of data between the 

subsystems. This chapter discussed data origination and destination, as well as the 

integration required to enable transmission between subsystems. Finally, the levels of 

testing were briefly discussed. Chapter Six provides specific information about the types 

of tests conducted with the prototype. 
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The detailed descriptions of design decisions, tradeoffs, and limitations for each 

subsystem and process within MERCURY are provided in Chapter Five. Chapter Six 

discusses the testing methods utilized to validate and verify the output of MERCURY 

and provides the results of the testing. 
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5. System Implementation 

5.1.    Overview 

Chapter Four presented the high-level description of an operational version of 

MERCURY. This chapter highlights the prototyped implementation of this proposed 

design. This chapter provides a detailed description of the components and processes 

within the prototyped version of MERCURY, including the prototyped versions of its 

three main components: the constructive engine, the scanner, and the knowledge base. 

Each of these components is represented abstractly, not practically, in the system. The 

system components are explained in terms of their functions, design decisions and 

corresponding advantages and disadvantages, tradeoffs and limitations, complexity, and 

modifiability. Chapter Six presents the results of the testing of MERCURY. Chapter 

Seven presents the conclusions of this research. 

5.2.    Definitions 

Several terms will be used extensively in the discussion of the detailed design. 

This section clarifies their meaning in relation to the detection system: 
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Signature    A series of bytes from a file that distinguishes self for 

nonself. 

Hypothesis A candidate signature formed by HEC. A hypothesis is 

composed of a label, features, the generation method, and a 

score that indicates the "goodness" of the hypothesis. 

Example      A labeled instance of the concept to be classified. In this 

system an example is a file that is labeled as self or nonself. 

Label A flag that indicates whether the example is an instance of 

self or nonself. The label is also used to flag whether the 

hypothesis classifies self or nonself. 

Attribute      A byte from a file.   A byte is composed of 8 bits, represented 

by logical IsandOs. 

Feature       A sequence of 16 attributes that can be used to identify a file 

as self or nonself. The absolute position of the attributes is 

not considered, although relative position is used by the 

selection rules. A hypothesis generated by construction 

contains multiple features, while a hypothesis generated by 

selection contains one feature. 

Generation The series of steps that were used to create the features. 
Method 

Concept      An abstraction that a file belongs to a class. The concept 

space of this research is self and nonself. 
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5.3.    Construction Induction Engine 

HEC develops signatures for both self and nonself files. Self signatures are used 

to classify files currently on the computer. Nonself signatures store information about 

previously seen viruses. The use of self and nonself detectors allow for extensibility 

within the computer immune system by allowing the ability to share virus information 

across computer systems. This capability is analogous to a vaccination shared among a 

population, in order to prevent the spread of disease. 

The constructive induction engine is responsible for providing MERCURY'S 

virus scanner the signatures needed to distinguish self from nonself. HEC performs the 

four constructive induction processes that were discussed in the literature review: 

hypothesis generation, evaluation, ordering, and incorporation. The following sections 

cover the implementation of these processes and the required design decisions. 

5.3.1.        Hypothesis Generation 

Hypothesis generation involves the creation of hypotheses based on 

predetermined rules and operators. HEC creates hypotheses based on two methods: 

initial selection of attributes from an example file, or construction based upon the 

features of two existing hypotheses from the same concept. HEC creates hypotheses by 

selective, then constructive induction. The following subsections describe the notion of a 

hypothesis, explain the selection rules and define the constructive operators and 

generation grammar. 
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5.3.1.1.     Hypothesis 

A hypothesis is a candidate solution to the problem the system was assigned to 

solve; however, more than one hypothesis may be needed to solve a problem. Inductive 

systems are based upon the creation, manipulation and evaluation of hypotheses. 

Hypotheses in HEC represent a candidate signature, or a sequence of bytes that identify a 

file as either self or nonself. 

In HEC, a hypothesis is composed of a label, feature, generation method, and 

score for effectiveness. The label indicates whether the hypothesis classifies self or 

nonself. During creation of a hypothesis by a selection rule, the hypothesis' label is 

given the same value as the example. A feature is a sequence of 16 bytes that may 

uniquely identify the example. This size was chosen based upon research done at IBM. 

This research empirically determined that a 16 byte signature is sufficient to provide a 

high detection rate with a false positive probability of less than 0.5% [KeA94]. 

Additionally, 16 bytes is the signature size used in current virus research, as noted in the 

industry publication Virus Bulletin [KSSW97].  The generation method explains how the 

hypothesis was created; this information is needed during evaluation and by the scanner. 

The score for effectiveness measures how effectively the hypothesis distinguishes 

between self and nonself. This score is discussed in the hypothesis evaluation subsection. 

Hypotheses are stored as a list of records. The list data structure was chosen for ease of 

manipulation. The record for each hypothesis contains three fields, label, method, and 

score. 
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This research hypothesized that a series of bytes can be used as an effective 

inductive feature to distinguish between self and nonself in a file. Other features could be 

used for this purpose, notably system calls or system state. Different antivirus programs 

have been created that use these features to determine the existence of viruses in a 

computer. MERCURY utilizes a scanner type antivirus program, since this type 

effectively recognizes byte signatures in files. 

5.3.1.2.     Example Set 

The example set is a collection of files that are labeled as instances of self or 

nonself. Through the inductive process, HEC seeks to create signatures which classify 

members of the example set as self or nonself. Some researchers use the term training set 

in lieu of example set, since the examples are used to train the system in the problem 

area. 

The example set is specified by a file that contains a listing of the file names and 

associated self or nonself labels. Self and nonself examples are included in the example 

set to ensure that signatures for each concept are induced from examples. Another 

technique would include examples from one concept only, allowing the system to detect 

members of the other concept as deviations. A system that trains on one concept would 

need to learn the most general hypothesis, while a system that trains on all possible 

concepts can learn a more specific hypothesis [Hau87]. 
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5.3.1.3.     Selection Rules 

HEC begins as a selective induction system; it only selects existing attributes to 

describe the concept. Any rule that extracts bytes from the example can be used for 

selection. Possible selection rules include: selecting bytes from a certain portion of a 

file, selecting random bytes from a file, selecting certain chunks from a file, selecting 

bytes through a sliding window moved across the file, or selecting every Nl byte. 

Based upon storage and computational limitations and constrained by the scope of 

this research, selection rules were limited. HEC uses three selection rules, chunking, 

sliding window, and every other byte sliding window. Table 16 explains these rules. 

Table 16 -- Selection rules 

Rule Description # Hypotheses Created1 

Chunking Selection 
This rule breaks an example into non- 
overlapping segments containing an equal 
number of bytes. 

N/K 

Sliding Window 
Selection 

This rule divides an example into 
overlapping segments containing an equal 
number of bytes. 

N-K+l 

Every Other Byte 
Sliding Window 
Selection 

This rule divides an example into 
overlapping segments, extracting every other 
byte from each segment until the specified 
number of bytes are selected. 

N-(2K-1) 

By way of illustration, Figure 14 shows how the selection rules create hypotheses from 

the examples. 

1 N is the number of bytes in the example. K is the number of bytes in each feature field of the hypothesis. 
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Chunking Selection from a File 

01010100010111110101011111010151 01110100 01011011 01010011 11011101 11010101 01110100 01011111 01010111 

Hypothesis One: 
0101010001011111 
01010111 11010101 Hypothesis Two: 

01110100 01011011 
01010011 11011101 Hypothesis Three: 

1101010101110100 
0101111101010111 

Sliding Window Selection from a File 

01010100 01011111 01010111 110101O1 01110100 01011011 01010011 11011101,11010101 01110100 01011111 01010111 
*•  \L~ -* J 1 I 

Hypothesis One: 
0101010001011111 
0101011111010101 

• • • 

Hypothesis Nine: 
1101010101110100 
0101111101010111 

Every Other Byte Sliding Window Selection from a File 

Q1010100 01011111 01010111 11010101 01110100)01011011 01010011,11011101 11010101 01110100 01011111 01010111| 

Hypothesis One: 
0101010001010111 
0111010001010011 

• • • 
Hypothesis Six: 
0101101111011101 
01110100 01010111 

Figure 14 — Selection rules 
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5.3.1.3.1.     Bias 

The choice of selection rules is a form of bias since these rules are based upon 

background knowledge gained from other antivirus research. Sliding window selection is 

similar to the current method of choosing byte signatures for a scanner based antivirus 

program. These methods try to find a series of bytes in a file that can be found anywhere 

in the file. Chunking selection was included in this research since this rule produces 

features that are a subset of those produced by sliding window selection. Every other byte 

sliding window (EOSW) selection was included in this set of selection rules to increase 

the probability of capturing patterns across a greater number of bytes. This form of 

selection could be interpreted as a form of construction, since these selection rules 

combine attributes through conjunction, creating a new feature. 

5.3.1.3.2.     Process / Algorithm 

HypoList  =   [] 

Read in file and associated label 

Use chunking selection rule to create hypotheses  from file 

Use sliding window selection rule to create hypotheses  from file 

Use every other byte sliding window selection rule  to create 

hypotheses  from file 

HypoList = hypotheses   from chunking,   sliding window and every 

other byte sliding window 

Figure 15 -- Algorithm for Selecting Hypotheses 

During the first hypotheses generation process, files from the example set are read by 

HEC. Each selection rule is applied to these files, resulting in a list of hypotheses. 
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5.3.1.3.3.      Computational Complexity 

Computational complexity captures the order of growth of an algorithm and gives 

a simple characterization of the algorithm's efficiency. This measure allows computer 

scientists to compare the relative performance of algorithms, identify areas of 

improvement, and highlight expected pitfalls during execution [CLR90]. 

Each selection rule is applied to each file from the example set. The number of 

hypotheses selected is the important factor in the computational complexity of selection. 

Based upon Table 16, the computational complexity of selection is O(n-k), or linear. 

5.3.1.4.     Hypothesis Construction 

The other method of hypothesis generation in HEC is hypothesis construction. 

Hypotheses are constructed by combining existing hypotheses through constructive 

operators. This constructive process can be repeated if "better" hypotheses are needed. 

Initially, hypotheses are constructed solely from selected hypotheses, although 

constructed hypotheses can be used as input for later iterations of construction. 
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5.3.1.4.1.      Constructive Operators 

Constructive operators create new hypotheses by specifying relationships among 

features of existing hypotheses. These operators can manipulate the features through 

logic, mathematics, statistics, heuristics, or a variety of other means. 

HEC uses three logical operators and two spatial operators. The logical operators 

perform a Boolean comparison of the existence of two features. The three logical 

operators are AND, OR, and XOR. These operators input two hypotheses with the same 

label and the same selection method. The constructive process outputs a single 

hypothesis that captures the essence of: both features in a file, one feature or another or 

both are in a file, or one feature or another has to be in the file, but not both 

simultaneously. Given N hypotheses, each logical operator will construct C(N,2) or N 

choose 2, hypotheses.  Figures 16 through 18 illustrate the logical operators constructing 

a new hypothesis from two existing hypotheses. 

Hypothesis One: 
01010100 01011111 
01010111 11010101 

Hypothesis Two: 
01110100 01011011 
01010011 11011101 

AND 

Constructed 
Hypothesis: 

01010100 01011111 
0101011111010101 

AND 
01110100 01011011 
01010011 11011101 

Figure 16 -- Pictorial Representation of the AND Operator 
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Hypothesis One: 
01010100 01011111 
01010111 11010101 

Hypothesis Two: 
01110100 01011011 
01010011 11011101 

Constructed 
Hypothesis: 

01010100 01011111 
01010111 11010101 

OR 
01110100 01011011 
01010011 11011101 

Figure 17 -- Pictorial Representation of the OR Operator 

Hypothesis One: 
0101010001011111 
01010111 11010101 

Hypothesis Two: 
01110100 01011011 
01010011 11011101 

Constructed 
Hypothesis: 

0101010001011111 
01010111 11010101 

XOR 
0111010001011011 
01010011 11011101 

Figure 18 ~ Pictorial Representation of the XOR Operator 

The spatial operators compare the relation of the features' relative locations in a 

file. The two spatial operators are BEFORE and DISTANCE. These operators input two 

hypotheses with the same label, the same selection method, and created from the same 

example file. The operators output a single hypothesis that captures the idea that one 

feature is before the other feature, or that one feature must be a certain number of 

attributes, or bytes, away from the other feature. 
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Hypothesis One: 
01010100 01011111 
01010111 11010101 

File 

K01 010100 01011011 01010011 11011101 
J01010100 01011111 01010111 11010101] 

Hypothesis Two: 
01110100 01011011 
01010011 11011101 

11010101 01110100 01011111 01010111 
01010100 01011111 0101011111011101 
101110100 01011011 01010011 110111011 

M1010101 01110100 01011111 01010111 

Constructed 
Hypothesis: 

01010100 01011111 
01010111 11010101 
COMES BEFORE 
01110100 01011011 
01010011 11011101 

Figure 19 - Pictorial Representation of the BEFORE Operator 

Hypothesis One: 
01010100 01011111 
01010111 11010101 

File 

101010100 01011111 01010111 11010101 

Hypothesis Two: 
01110100 01011011 
01010011 11011101 

01010100 01011011 01010011 11011101 

11010101 01110100 01011111 01010111 
01010100 01011111 0101011111011101 

J 1110100 01011011 01010011 110111011 
11010101 01110100 01011111 01010111 

Constructed 
Hypothesis: 

01010100 01011111 
01010111 11010101 
IS 8 BYTES FROM 
01110100 01011011 
01010011 11011101 

Figure 20 - Pictorial Representation of the DISTANCE Operator 

The distance between features is based upon the number of bytes between the last 

feature of the first hypothesis and the first feature of the second hypothesis. This method 

does not account for hypotheses with interleaved features. Given N hypotheses, each 

spatial operator will construct C(N,2) or N choose 2, hypotheses. Figures 19 and 20 
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illustrate the relation between the new constructed hypothesis and the original hypotheses 

from which it was formed. 

5.3.1.4.2.     Bias 

Several biases were used in determining whether to apply a constructive operator 

to two hypotheses. The first bias only allows construction on hypotheses from the same 

concept as determined by the label. This bias ensures that the hypothesis' label is not 

assigned randomly; rather, the label is based upon previous information. 

Another bias limits construction to existing features, instead of allowing randomly 

generated features. During the selection process, HEC extracts all possible features from 

the file based upon the selection rules. Randomly generated features are not guaranteed 

to be found in the example files. Randomly generated features that are found in the 

example files are duplicates of existing selected features. Since randomly generated 

features would not provide any new information or insight, they are not used in HEC. 

From a system perspective, scanning for randomly located byte patterns is unnecessarily 

complex, compared to a methodical approach. 

Another bias limits the application of operators to hypotheses created through the 

same selection rule. This bias was included in the system to limit the different methods 

of file reading the virus scanner would need to use when searching for a detector in a file. 

This bias also reduces the number of constructed hypotheses. Finally, removing the 

possibility of combining selection rules in a hypothesis aids in isolating and analyzing 

whether a particular constructive operator improves the performance of HEC. The main 
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objective of this research was to demonstrate the applicability of constructive induction to 

virus detection; therefore, this bias simplified the testing of this objective. It simplified 

testing by concentrating attention on the effect of operators used for construction, rather 

than the effects of combining selection rules. 

The choice of constructive operators is based upon background knowledge of the 

binary structure of executable programs and virus research. The logical operators 

account for multiple, or restricted virus characteristics.   Logical operators also account 

for common information that can be found in uninfected programs. The spatial operators 

account for the positioning of virus characteristics and nonvirus characteristics in an 

infected file. 

Bias also restricted the application of the operators to two hypotheses, based upon 

the example file from which the hypotheses were derived. The first operator bias 

involves the AND operator. The AND operator is only applied to hypotheses with 

features from the same file. Since features are derived from an example file, the selected 

hypotheses are guaranteed to detect at least one example correctly. Without this bias, it is 

possible to create hypotheses using AND that do not classify any examples, reducing 

system performance when compared to selection. Another bias involves the XOR 

operator. Since XOR captures the essence that one feature or another feature is found in 

the file, but not both, a check is made prior to construction to ensure the hypotheses do 

not contain features generated from the same file. Other biases involve the spatial 

operators. The spatial operators BEFORE and DISTANCE are only applied to 

hypotheses derived from the same example file. This guarantees that the constructor will 

be able to determine a distance and ordering for the features in the file. The final 
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operator bias is for the OR operator, which has no restrictions. The use of these biases 

reduces the overall number of hypotheses generated through construction. 

A variety of techniques can be used in the application of constructive operators 

across the hypotheses. One technique would apply all the operators across two 

hypotheses and then evaluate the results. Another technique would apply an operator 

across all the hypotheses, evaluate the results from that operator, and if necessary, apply 

the next operator in succession. A third technique would apply all the operators across all 

hypotheses and then perform hypothesis evaluation. HEC utilizes the third technique. 

This decision was based on the need to test this research's primary hypothesis that 

constructive induction provides a suitable learning mechanism for the virus detector 

system of a computer immune system. Each operator is applied to all the hypotheses to 

see if construction improves the overall detection potential of the system. This technique 

also tests the constructive operator hypothesis by providing information on whether the 

spatial and logical operators can be used to construct effective hypotheses. Finally, since 

constructive induction has not been used in previous virus detectors, no background 

knowledge exists that can guide which operators will lead to the best detector. 

5.3.1.4.3.      Generation Grammar 

A hypothesis can be created in several ways through the selection rules and 

constructive operators. Information is stored in the generation method field of the 

hypothesis that records the selection rule used to extract the features from the file and the 

relationship between the features established by the constructive operators.  Evaluation 
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of the hypothesis is accomplished by comparing the hypothesis to the examples and 

scoring the hypothesis.  During this comparison, the features are found using the 

selection method and the relation between the features is compared to the generation 

grammar to determine if the hypothesis classifies the example. 

The generation method field is instantiated through the generation grammar. This 

grammar is similar to prefix mathematical notation, where the selection rules are 

analogous to operands and constructive operators are similar to mathematical operators. 

The productions for the generation grammar are: 

S-»R 

S ^ OSS 

R -» chunking I sliding_window | eo_sliding_window 

O ■> and I or I xor | before I distance 

By way of example, the generation method stored for a hypothesis created by applying 

the OR operator to two features selected through chunking rule would be [or, chunking, 

chunking]. The generation method is stored in a binary tree data structure inside the 

method field of the hypothesis. 

53.1.4.4.     Process / Algorithm 

During constructive induction, the various constructive operators are applied 

across all the hypotheses. For each operator, two hypotheses are chosen from the 
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hypothesis list, and the labels and selection method are checked to ensure they match. 

The new hypothesis is created by setting the label equal to the label of the original 

hypotheses and the score is set to null. The algorithm for this process is shown in Figure 

21. 

The next steps are dependent on the type of operator being used. Construction 

through logical operators is accomplished by ensuring that any biases applicable to the 

operator are satisfied. Next, the method is constructed by placing the operator at the root 

of the new expression, with the left and right methods from the original hypotheses. 

Construction through spatial operators is accomplished by ensuring that the hypotheses 

are from the same file. Following this step, the file from which the hypotheses were 

selected is searched to determine the relative location of the features for BEFORE and the 

number of bytes between the features for DISTANCE. This process is continued until 

each constructive operator has been applied to the hypotheses. This method does not 

exhaustively search for repeated features. 
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ConstructedList = [] 

HypoList = hypotheses to be used for construction Loop 

Loop 

Hypol  =  first hypothesis  in HypoList 

Tail  = remainder of HypoList after Hypol 

Loop 
Hypo2  =  first hypothesis  from Tail  such that 

Hypo2.Label  = Hypol.Label  and selection rule  for 

Hypol  and Hypo2  are  the same 

Apply constructive operators  to Hypol  and Hypo2,   storing 

new hypothesis  in ConstructedList 

End Loop when Tail  =   [] 

End Loop when HypoList  =   [] 

ConstructedList = Hypotheses  created from applying constructive 

operators  to hypotheses  in HypoList 

Figure 21 -■ Algorithm for Constructing Hypotheses 

5.3.1.4.5.      Computational Complexity 

Constructing hypotheses uses a doubly nested loop to select the hypotheses two at 

a time in a combinatorial fashion. The complexity of this loop is based upon the number 

of hypotheses in the HypoList, or n. The application of the constructive operator takes 

constant time for logical operators and is based upon the size of the file, or/, for spatial 

operators in order to perform the search for the features.  Based upon this analysis, the 

algorithm for constructing hypotheses takes 0(n f). 
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5.3.2.        Hypothesis Evaluation 

Hypothesis evaluation is responsible for determining a score of "goodness" for 

each hypothesis. This score is used to determine if the hypothesis should remain in the 

system for possible construction or incorporation into the knowledge base. During 

hypothesis evaluation, each hypothesis is compared against the example set to determine 

the number of examples that the hypothesis classified and whether these classifications 

were correct. 

5.3.2.1.     Scoring 

MERCURY classifies files as self or nonself based upon virus signatures learned 

by HEC. HEC is responsible for learning signatures for self and nonself that are able to 

accurately classify files and have a predictive capability. This capability determines 

whether a previously unseen file is similar to existing self or nonself. In order to achieve 

a globally maximum accuracy and predictive capability, HEC seeks to induce hypotheses 

that are locally maximal. The hypothesis score is used to determine if the hypothesis is 

locally maximal. 

Classification is when the features of the hypothesis are found in the example and 

this match of features satisfies the expression stored in the generation method field of the 

hypothesis. Misclassification is a form of classification where the labels of the example 
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and the hypothesis are different. Correct classification is when the hypothesis classifies 

the example and the labels of the hypothesis and the example are the same. 

A variety of measures can determine the effectiveness of a hypothesis for 

classifying files as self or nonself. Many existing constructive induction systems have 

used information gain for this purpose. Information gain is a measure of how well an 

attribute splits the examples into groups; i.e. the reduction of system entropy by the 

hypothesis. Information gain is computed through the following set of equations, where 

p is the number of examples classified in class P, n is the number of examples classified 

in class N, and v is the total number of examples. 

I(p,n) = -(-E-log2-?-)-(-?-\og2^-) 
p + n        p + n       p + n        p + n 

E(A) = ±^^I(Pi,ni) 
,=i P + n 

gain(A) = I(p,n)-E(A) 

I(p,n) captures the idea that the probability of any example belonging to class P is 

p/(p+n) and the probability of any example belonging to class N is n/(p+n). E(A) is the 

expected information requirement for examples that have a particular attribute, A. The 

information gain is then the amount of entropy reduction ascribed to a particular attribute. 

[Qui86] 

In HEC, the hypothesis is labeled during generation. During evaluation, HEC 

must determine how well the hypothesis detects examples with the same label. Using 

information gain in HEC would result in assigning the same score to hypotheses that 

classify many examples correctly and to hypotheses that classify many examples 

incorrectly. This property of information gain is based upon the score's normal usage, 
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where the system assigns a label to the classifier after evaluation.   This property is based 

upon the log2 terms used in the calculation for I(p,n). Based upon this property, 

information gain is not used in HEC. Instead, other measurement criteria are used to 

evaluate hypotheses. 

The hypothesis score used in HEC reflects three important measurement criteria 

of effectiveness: power, purity, and complexity. Power indicates the capability of the 

hypothesis to classify any given example. Purity reflects the ability of the system to be 

correct when it classifies. Complexity is related to Occam's razor; simple hypotheses 

should be preferred over those that are complex. Based upon these measurement criteria, 

the measurements of Table 17 are possible. In order to illustrate how these measures are 

calculated, an example is provided in Figure 23. 

Table 17 ■■ Possible Measurements for Hypothesis Effectiveness 

Measurement One 

Power 
This measurement calculates the strength of the hypothesis by rating the 
percentage of classified examples over the entire set of examples. This 
measure does not account for correctness.  

Measurement Two 

Purity 

This measurement examines the group classified as belonging to a 
specific concept; in order to calculate the percentage of examples 
classified correctly over the total number of examples classified by that 
hypothesis. 

Measurement Three 

Complexity 

This measurement is based on Occman's Razor [Gun91], which states 
"Pluralitas non est ponenda sine neccesitat," meaning entities should 
not be multiplied unnecessarily. This measure is calculated by looking 
at the depth of the tree stored in the method field of the hypothesis, with 
a complexity of 0 for selection. 

A desired measure is one that rewards a hypothesis for low complexity, high 

power and high purity. This concept is depicted in Figure 22.   Hypotheses that posses 
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this desired property are locally maximal and encourage the system to become globally 

maximal. 

[H,H,H] 
o 

■^^  \ 

iClLMAl)/   | 

^/         \ 

[L,L,L] Cc mplexity          j 
 ' ^ 

4\ 
\ \ 

\           ■ ■ \ \ \ \ 
-■:■■'■:               ■                          ■■:■;■■.■'■:-M-'"          ■■■-:.'\     ... 

■■■■: N   ■ ■ 
■      ■         ■■■■■■    \ 

■X 

Figure 22 — Depiction of Optimal Scores 

The score for each hypothesis is stored as a record with fields for complexity, 

power and purity. These measurements require the evaluation process to determine the 

following metrics for each hypothesis: R, the number of examples classified correctly; S, 

the number of self examples; N, the number of nonself examples; C, the number of 

examples classified; and D, the number of constructions. 

Based on this information, the score can be calculated by: 

r. 
Power = ■ 

N + S 

Purity = — 

NumConstru ctions = D 
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Hypothesis Evaluation      | 

Classified 

4 Positive + 
3 Negative 
7 Total Hypothesis 

Example Space 

6 Positive + 
7 Negative 
13 Total 

Unclassified 

2 Positive + 
4 Negative 
6 Total 

Power: 
Purity: 
Complexity: 

7 /13 = 0.538 
4/7 = 0.571 
2 

Hypothesis 
((00101000) OR (01010000)) AND ((00001111) XOR (11111110)) 

AND 
2nd Level of Construction 

OR XOR 
1st Level of Construction 

Z^^ ^^% 
Sliding 

Window 
Sliding 

Window 
Sliding 

Window 
Sliding 

Window 
Selection 

Figure 23 ~ Example of Calculated Scores 
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5.3.2.2.     Coverage 

Power, purity and number of constructions provide a local perspective on the 

performance of an individual hypothesis. A global perspective is also needed to ensure 

the hypothesis list, as a whole, can classify the example set. This perspective is 

encapsulated by the concept of coverage. Coverage is derived by comparing the 

hypotheses to the examples to determine the number of hypotheses that classify, 

misclassify and fail to classify each example. Coverage shows whether the hypotheses 

are able to classify the entire example set, or only a certain portion.   This measure is 

based on the percentage of examples classified by the set of hypotheses. Coverage is 

calculated after evaluation in a separate procedure. 
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5.3.2.3.     Process / Algorithm 

R,S,N,C <- 0 

HypoList = hypotheses to be evaluated 

ExampleList = examples that hypotheses are evaluated against 

Loop 

Hypo = first hypothesis in HypoList 

Loop 

Example = first example in ExampleList 

If Example.Label = Self 

S <- S + 1 

Else 

N <- N + 1 

End If 

P <-  Parse(Hypo,   Example) 

If  P = Found 

C <- C +  1 

If Hypo.Label  = Example.Label 

R <-  R +  1 

End If 

End If 

End Loop when ExampleList  =   [] 

Hypo.Score =  Score(Hypo) 

End Loop when all hypotheses  are evaluated 

Figure 24 -- Algorithm for Hypothesis Evaluation 

During the evaluation algorithm, depicted in Figure 24, each hypothesis is 

compared to all examples to determine its score. The parse function is used to compare a 

hypothesis from the list of hypotheses and an example chosen from the example list. 

Parse is responsible for determining whether the features were found and the method was 

satisfied. If the features were found and method was satisfied, the hypothesis classifies 

the example. This classification is correct if the labels of the hypothesis and the example 

match, otherwise this hypothesis misclassifies the example. Score is responsible for 
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performing the calculations for the hypothesis score and storing this information in the 

hypothesis. The evaluation process stops when all the hypotheses have been compared 

against all the examples. 

5.3.2.4.     Computational Complexity 

Hypothesis evaluation is accomplished through a doubly nested loop. The first 

loop traverses the hypothesis list, one at a time. This loop is executed n times, where n is 

the number of hypotheses in the list. The second loop iterates through the list of 

examples e times, where e is the number of examples.   Therefore, evaluation has 

computational complexity of O(en), or 0(n2) in the worst case. 

5.3.3.        Hypothesis Ordering 

The hypothesis ordering step is performed before or after the evaluation step, with 

the purpose of reducing the number of hypotheses needed for evaluation or construction, 

respectively. HEC has the ability to order hypothesis after evaluation, increasing the 

efficiency of the system. Bias or other heuristics can be used prior to evaluation to 

reduce the number of hypotheses that need to undergo this computationally complex 

operation. After evaluation, hypotheses that do not perform well can be removed in a 

manner similar to genetic algorithms or beam search. 
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HEC orders the hypotheses after evaluation, with the purpose of removing poor 

performers from the pool of hypotheses sent to construction. The decision to evaluate 

before ordering is based on the research objectives of determining what constructive 

induction components are viable in this domain. Ordering is used to improve the average 

case performance of construction, which is an inherently combinatorial operation. 

Ordering searches for hypotheses that are not dominated by other hypotheses. These 

hypotheses have the highest score for power and purity. The following sections examine 

the growth in the number of hypotheses without ordering, changes to the evaluation 

process, and ordering the hypotheses to find the nondominated set. 

5.3.3.1.     Hypothesis Growth 

HEC generates numerous hypotheses in order to find the set of hypotheses that 

adequately classifies the examples. This subsection explores the growth of hypotheses 

based upon the various generation methods. Using the selection rules, selection creates at 

most 

N/K + (N-K+l)+ (N- (2K-1)) 

which by reduction, is equivalent to 

N/K+2N-3K+2 

hypotheses from a file, where N is the number of bytes in the file and K is the number of 

attributes in each feature. 
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Following selection, hypotheses are used for construction.   Construction chooses two 

hypotheses at a time, in a combinatorial fashion, and applies the five constructive 

operators. This process can be examined in terms of the number of hypotheses sent to 

construction, or x. 

s„\ 
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'5 2  5 ^ —x —X 
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2 2        2 
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This equation does not account for the biases used in construction to limit the application 

of constructive operators.  This equation can be viewed more generally in terms of the 

levels of construction, L; the number of constructive operators, Ops; and the number of 

initial hypotheses, X as: 

2L-1„21 

0(Ops'-lx* ) 

This order of growth of the number of constructed hypotheses is valid for x > 4. By way 

of example, Figure 25 shows how the number of hypotheses in the system increases with 

each level of construction for a system like HEC that uses 16 attributes in a feature. 
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Construction Complexity caused by the Number of 
Constructions 

 Chunking 

 Sliding Window 

 EO Sliding Window 

1 2 3 

Number of Constructions 

Figure 25 ~ Complexity caused by Number of Constructions 

5.3.3.2.     Nondominated Set 

A variety of techniques could be used to reduce the number of hypotheses in the 

system. More heuristics could be used to limit the number of hypotheses that are 

constructed. The label of a hypothesis with a high power and low purity could be 

switched from one concept to another. These hypotheses have an ability to classify many 

examples, however incorrectly; switching the label would dramatically improve the 

purity. Such a step is not needed since the corresponding hypothesis that has high power 

and high purity exists elsewhere in the hypothesis list. Hypotheses could be randomly 

chosen from the hypothesis list and used for construction. Such a stochastic process 

would have the same average performance of not ordering and would not guarantee any 

improvements. 
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EEC's ordering mechanism is based upon the nondominated set of hypotheses. 

This set is found by placing the hypotheses into "bins", a two-dimensional array that 

equally distributes the hypotheses based upon their power and purity score.   A 

hypothesis is assigned to a bin based upon a mapping that translates the power and purity 

scores from the range [0.0 .. 1.0] into five bins with containing the ranges ([0.0 .. 

0.20),(0.21 .. 0.40),(0.41.. 0.60),(0.61 .. 0.80),(0.81..1.0]). Five bins were chosen to 

provide a coarse ordering, since a lack of existing empirical evidence impedes finer 

tuning. The system was designed to use a varying number of bins. With this system of 

bins, a hypothesis with a power score of 0.9 and a purity score of 1.0 would have the 

index (5,5) into the two dimensional array of bins. A hypothesis with a power score of 

0.5 and a purity score of 1.0 would be placed into bin (3,5). The index into the bins is 

expressed in terms of the power index followed by the purity index, or (power, purity). 

The bin (5,5) is considered the "optimal" bin in this system since this is the location of 

the hypotheses with the highest power and purity scores. Figure 26 illustrates this system 

of bins and the location of the optimal bin. 

The nondominated set is the set of hypotheses with scores that are greater than the 

hypotheses in the dominated set. In terms of the bins, the dominated set is the set of non- 

empty bins where another non-empty bin has a higher power index and a higher purity 

index. The one exception to this rule is that all filled bins in the column for the highest 

purity scores are included in the nondominated set. Since HEC is designed to learn 

classifiers for a concept, and purity measures the ability of the hypothesis to classify 

correctly, hypotheses with a high purity score should remain in the system. 
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Figure 26 - Hypothesis Evaluation Method Using Bins 
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5.3.3.3.     Process / Algorithm 

Index = indexes of previous ordering 

HypoList = [] 

B = bins with evaluated hypotheses 

PrevPur <-  0 

For Pow =   (5   ..   1) 

If  PrevPur > Index(Pow) 

PrevPur <-  0 

End If 

OldPur <-  Index(Pow) 

For Pur <-   (5   ..   1) 

If   (Pur < PrevPur)   and   (Pur <  5) 

Exit  loop 

End If 

If B(Pow,Pur).Count >  0 

Append(HypoList,   B(Pow,Pur).BinHypoList) 

Index(Pow)   <-  Pur 

If Pur < OldPur 

PrevPur <-  Pur 

Exit Loop 

End If 

End If 

End Loop 

End Loop 

Index = Specifies  the bins that compromise the nondominated set 

HypoList = Hypotheses  in the nondominated set 

Figure 27 -- Algorithm for Hypothesis Ordering 

Figure 27 shows the algorithm used to order hypothesis stored in bins. The output 

of this algorithm is a list of hypotheses from the nondominated set. Additionally, an 

index is created that defines the location of the nondominated set in the bins. This index 

can be used if the nondominated set of hypotheses is not sufficient to construct classifiers 
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of the examples. The index can be used to increase the membership of the nondominated 

set, increasing the number of hypotheses available for subsequent inductive steps. 

5.3.3.4.     Computational Complexity 

Searching through the bins for the members of the nondominated set is accomplished 

through a doubly nested loop. Each loop iterates one time for every power row, or 5 

times. The append operation can be accomplished in constant time through pointer 

manipulation. The overall complexity of the ordering step can be generalized to 

0(bpowbpur) where each b is the number of bins into which power and purity are divided. 

5.3.4.        Hypothesis Incorporation 

Hypothesis incorporation is responsible for converting the hypotheses that 

correctly classify the examples into a form for acceptance into the knowledge base. The 

current version of MERCURY dose not fully implement this process. Future iterations of 

MERCURY should investigated algorithms for reducing the number of hypotheses 

needed to form detectors. Adding this incorporation capability will close the inductive 

loop. 

Several fields of a hypothesis would be needed by the virus scanner, including 

label, generation method, and features. The hypothesis score could also be incorporated 
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into the knowledge base, to aid the virus scanner in determining the relative worth of a 

classification. 

When hypotheses are incorporated, they are sorted so that hypotheses that detect 

nonself are at the beginning of the list. This ordering ensures nonself byte patterns of 

files are detected before self byte patterns, improving the classification process. 

Following this sorting operation, the relative fields of a hypothesis are written to a text 

file, with one field written per line. 

5.4.    Knowledge Base Interface 

The knowledge base is responsible for storing information about the detectors 

used to classify files as self or nonself. This knowledge base is currently structured as a 

flat text file consisting of the detectors for self and nonself. The nonself detectors are 

included first to ensure that viruses are detected with few misclassifications as self. This 

knowledge base can accept virus signatures from other files than HEC. Current virus 

signatures are comparable to nonself hypotheses selected through the sliding window 

selection rule. This ability ensures that existing virus detection knowledge is not lost 

using a system like MERCURY. 

The only components of MERCURY that can access the knowledge base are HEC 

and the scanner. Future iterations of MERCURY will include interfaces for introducing 

new detectors through vaccination. Controlled user manipulation of the knowledge base 

is also an area of possible development, as well as virus updates received through the 

Computer Health System. 
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5.5.    Scanner 

The third and final component of MERCURY is the virus scanner. This scanner 

is responsible for determining the classification of a file based upon the self and nonself 

detectors created by HEC. The following sections discuss the use of self and nonself 

detectors to classify files on the system. In the current version of MERCURY, the 

scanner is not fully implemented. Reading the detectors from the knowledge base and 

determining the files to scan were not incorporated, while determining the classification 

of a file was. Several of the components of HEC can be reused in the scanner. 

5.5.1.        Reading Detectors 

The detectors created by HEC are stored in the knowledge base. As discussed 

above, these detectors are stored in a flat file. Each detector consists of a label, feature, 

and generation method. The scanner reads this information from the file and creates a list 

of hypotheses based upon the hypothesis data structure from HEC. 

5.5.2.        Determining Files to Scan 

Only certain files are susceptible to infection by viruses. This research is 

concerned with detecting file infector viruses in executable files, as compared to viruses 

that affect data files, for example macro viruses in the Microsoft Office product line. 
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Executable files are distinguished by the following file extensions: exe, com, sys, dll, bat, 

vxd, cab and drv. The list of files to scan is generated by searching the directory structure 

of the system for files with these extensions. This list is converted into the example list 

data structure used in HEC. In order to provide a basis for comparison against the list of 

detectors, each file is given the label of self. 

5.5.3.        Determining Classification of File 

A file is classified by determining if any of the detectors can be found within it. 

This process is carried out by using the test_example function of HEC's evaluator. This 

function operates by comparing the list of examples to the list of hypotheses; in the 

scanner, the files to scan are compared to the list of detectors. Each file is opened and 

read, 16 bytes at a time, using the various selection methods. These bytes are compared 

to the features from the detectors. A flag is raised if there is a match based upon the 

detection scenarios below. The entire generation method and features of the detector 

must match for the file to be considered classified. 

5.5.3.1.     Detecting Unknown Files 

A file is considered unclassified if no detector was able to classify it. In the fully 

implemented version of MERCURY, this file would be annotated as unclassified and sent 
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to the virus expert to determine if the file is infected. Once the expert classified the file, 

HEC would learn a new detector for it. 

5.5.3.2.     Detecting Self Files 

A file is classified as self if one or more self detectors are found in the file, and no 

nonself detectors are found. As discussed in Chapter Two, when a virus infects a file, the 

virus normally leaves large portions of the file intact. If the existence of any self 

detectors, without regard to the existence of nonself detectors, were used as the decision 

criteria, the system would be duped by "normal" viruses. 

5.5.3.3.     Detecting Nonself Files 

A file is classified as nonself if any nonself detector is found. Once a file is 

detected as nonself, the user is informed of a possible virus. Future versions of the 

scanner will allow the user to remove the infection from the file, delete the file, or 

exclude the file from future scanning. The system could send the file to a virus expert in 

the Computer Health System, or if it was misclassified, send the file to HEC to learn a 

self detector for this file. 
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5.5.3.4.     Detecting Previously Unseen Infectors 

Previously unseen infectors are detected through the failure to recognize the self 

detectors and the predictive capability of the nonself detectors. When a virus infects a 

file, it moves portions of the file to different locations. Such an action can violate the 

conditions of the self detector. This violation may be caused by breaking the sequence of 

bytes used as a feature or breaking the relationships between the features established by 

the constructive operators.   An infection may also be detected by a nonself detector that 

has the predictive capability to recognize features of similar viruses. 

It is possible for viruses to go undetected. If a self detector is found and no 

nonself detectors are found, MERCURY could classify an infected file as self. The use 

of self and nonself detectors should improve the ability of MERCURY to combat these 

invaders by providing an extra layer of detectors the virus would need to elude. Future 

iterations of MERCURY should employ heuristics from current antivirus programs to 

supplement MERCURY'S ability to detect previously unseen invaders. 

5.6.    Development Process 

MERCURY was developed using a risk driven software process model called the 

spiral model. This process iterates through objectives, constraints, alternatives, risks, risk 

resolution, planning and commitment [Boe88].  Each step of the process is preceded by 
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a risk analysis to determine if continuing the process will result in positive gains.   The 

development of HEC followed this process. 

The first iteration of the development process explored the feasibility of the 

algorithms used for construction. This iteration did not look at accessing files, but rather 

developing and integrating the processes of selection, construction, and evaluation. 

Through the use of Prolog, the algorithms were developed with respect to logic and 

purpose, rather than implementation. Construction used bitwise binary operators that 

manipulated the bits of the features through the AND, XOR, OR, and NOT operators. 

This method of construction was deemed ineffective, since it could misclassify files 

based upon the variety of byte combinations that could result in the same feature. 

Development in Prolog was halted due to execution speed considerations and the memory 

requirements of storing a large number of hypotheses. This iteration illustrates an 

alternative method to construction, representation of hypotheses and evaluation. The 

hypotheses were evaluated by converting the examples into a list of all possible 

derivations of an example using selection and construction. 

The next iteration of the spiral investigated different alternatives to the induction 

algorithms with the intention of improving efficiency and classification. The current 

constructive operators replaced the bitwise operators.  The bitwise operators were 

deemed ineffective based upon the lack of specificity in comparison to the original 

features. Finally, the program was translated to Ada, in order to take advantage of the 

structured nature of the algorithms and improved file access ability provided by this 

language. Another iteration resulted in more efficient evaluation routines, introduction of 

ordering, increased information hiding, lower coupling and greater cohesion. 
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5.7.    Summary 

This chapter highlighted the prototyped implementation of the proposed design of 

MERCURY. The chapter provided a detailed description of the components and 

processes within the prototyped version of MERCURY, including the prototyped 

versions of its three main components: the constructive engine, the scanner, and the 

knowledge base. The constructive induction, HEC, was decomposed into its four main 

processes: hypothesis generation, evaluation, ordering and incorporation. Biases that 

were incorporated into the learning process and the reasoning for their inclusion were 

investigated. These biases provide tidbits of background knowledge that aid the learning 

mechanism in determining the "best" classifier. Issues involving the knowledge base, 

and its integration into future iterations of MERCURY were addressed. The 

methodology used to scan for viruses was discussed, as well as possible solutions to 

detection challenges future iterations of MERCURY will encounter. Chapter Six presents 

the results of the tests run utilizing MERCURY. Chapter Seven draws conclusions from 

these analyses, and provides areas for system and methodological optimization, and 

future areas of research in these fields of study. 
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6. Analysis and Results 

6.1.    Introduction 

Chapter Five provided a detailed description of the components and processes 

within the current version of MERCURY, focusing attention on the constructive 

induction engine named HEC. This chapter presents the results of running various testing 

scenarios utilizing MERCURY, in order to determine the effectiveness of the 

constructive induction approach applied to virus detection. 

First, the eleven test cases are explained in terms of their creation and testing 

purpose. The performance of MERCURY is analyzed in five dimensions: time, space, 

power and purity, coverage and process optimization. Each of these dimensions are 

described in their importance for rejecting or supporting the hypotheses stated in Chapter 

One. The primary research hypothesis as related to MERCURY is that constructive 

induction provides a suitable learning mechanism for the virus detector system of an 

individual computer system. In support of this primary hypothesis, the virus feature 

hypothesis conjectured byte patterns can be used as the basis of a constructive induction 

based computer virus detector. Additionally, the constructive operator hypothesis stated 

logical and spatial operators can be used for constructing new attributes for the computer 

virus detector. Conclusions from these analyses are presented in Chapter Seven along 

with future areas of research. 
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6.2.    Test Cases 

Testing of MERCURY was accomplished through analyzing the hypotheses 

generated for all eleven test cases. These test cases were divided into two groupings: 

laboratory and operational.   The laboratory test cases were designed to test 

MERCURY'S functionality under certain expected situations along controlled 

dimensions. The operational test cases utilized segments of actual application programs 

to test MERCURY'S functionality in simulated "real world" situations. 

Each test case was composed of eight files labeled self and two files labeled 

nonself.   This composition was chosen to reflect the small number of files that may be 

infected on a computer. Each file was 100 bytes in length, based upon the large time and 

space growth needed for generating, evaluating and ordering hypotheses. 

The laboratory test cases were designed to investigate MERCURY'S performance 

in particular situations. The files that composed each test case do not reflect files that are 

used in a computer; rather, these files reflect situations that might be encountered or 

particular machine learning problems. Since these test cases were used to validate and 

verify MERCURY, the analyses presented in the subsequent sections will focus on the 

operational test cases. Table 18 provides an overview of the laboratory test cases. 
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Table 18 -- Test Cases 1 - 8 

Number Structure Purpose                     1 

1 Self- Mil's 
Nonself-All O's 

Does detection work?                     j 

2 Self- All l's 
Nonself- Random characters 

Does MERCURY detect repeated 
patterns? 

3 Se//- Random characters without y 
Nonself- Random characters with y 

Does MERCURY induce classifier 
for infrequent patterns? 

4 Self- Have equal number of l's and O's 
Nonself- Random characters with unequal 

number of l's and O's 

Does MERCURY detect parity of 
bytes? 

5 Self- Contain pattern y same distance apart 
Nonself- Contain pattern y varying distance 

apart 

Does MERCURY detect spatially 
and logically? 

6 Self- same as Nonself Does MERCURY'S evaluation 
process work? 

7 Self and nonself are complement of each other Can MERCURY induce detector 
for absolute position? 

8 Self- Randomly generated string 
Nonself- Randomly generated string 

Can MERCURY detect patterns in 
random strings?                               1 

The operational test cases investigated MERCURY'S ability to induce detectors 

for segments of application programs.   The files in this test case were created by 

extracting a 100 byte segment approximately 2,000 bytes offset from the beginning of the 

file. This segment of bytes was chosen to increase the probability of detection based 

upon patterns in the binary application code, rather than patterns in binary libraries 

included in the beginning of many applications.   Table 19 shows the structure and 

purpose of each operational test case. 

Each test run collected information on: the time needed for selection and 

construction; the coverage of the examples by the hypotheses; and the label, generation 

method, and score fields of the hypotheses. 
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Table 19 - Test Cases 9 -11 

Number 

10 

11 

Structure 
Self- Randomly chosen programs 
Nonself- Randomly chosen programs 
Self- Programs copyrighted by companies other 

than Microsoft 
Nonself- Programs copyrighted by Microsoft 
Self- Randomly chosen programs 
Nonself- File infector viruses 

Purpose 
Does MERCURY detect patterns 
in programs?  
Does MERCURY detect patterns 
in programs from different 
companies? 
Does MERCURY detect viral 
patterns? 

6.3.    Time 

The first dimension of MERCURY analyzed was the time the constructive 

induction process utilized to generate, evaluate and order the hypotheses. Two time 

parameters were considered important for each test case: the time needed for selective 

induction and the time needed for constructive induction. The following subsections 

analyze the time results for the laboratory and operational test cases. These results were 

obtained by running each test on one type of computer and cross validating some of these 

results on another type of computer. The first type of computer was an Intel Pentium 

200MHz computer with 64MB of RAM running Windows 95. The second type of 

computer was an Intel Pentium II 350MHz with 64MB of RAM running Windows 95. 

The laboratory test cases illustrated the difference in time requirements for 

selective and constructive induction. Selective induction was run on the first hardware 

platform, and took an average of 1.5 minutes to complete while constructive induction 

took an average of 1338.5 minutes to complete. These results were not cross validated 
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based upon the small expectations of occurrence in operation. The graphical depiction in 

Figure 28, shows the disparity in time needed for selection and construction. 

Hypotheses Generation Time 

E 1000.00 mm 
12 3 4 5 6 7 8 

■ Construction 

T es t Case 

Figure 28 -■ Hypotheses Generation Time for Test Cases 1-8 

Similar to the laboratory test cases, there was a significant difference in the 

induction times between selection and construction for the operational test cases. Each 

time result was cross validated to investigate the effect of hardware upon the performance 

of MERCURY. Selective induction for these test cases took 5.4 and 2.8 minutes for each 

testing platform respectively. Constructive induction took 4797.5 and 3531.9 minutes 

respectively for each hardware platform. These results are graphically depicted in Figure 

29. 
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Figure 29 -- Hypotheses Generation Time for Test Cases 9-11 

6.4.    Space 

The next performance dimension of MERCURY is the number of hypotheses that 

were induced. The results of this section were based upon a frequency analysis of the 

hypotheses that remained following hypothesis generation, evaluation and ordering. 

Several aspects were important to the space performance of MERCURY. The 

first consideration was the composition of hypotheses generated during selection. The 

next consideration was the composition of hypotheses generated during construction by 

each method. The third consideration was the composition of hypotheses generated 

during construction by each operator. The final consideration was the total number of 

hypotheses created by selective and constructive induction, combined. 

The first aspect of space performance is the composition of hypotheses generated 

by each selection rule in selective induction.   Across all the laboratory test cases, 4% of 
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all hypotheses were generated by the chunking selection rule, 44% by the every other 

byte sliding window selection rule, and 52% by the sliding window rule. Across all the 

operational test cases, 4% of all hypotheses were generated by the chunking selection 

rule, 43% by the every other byte sliding window selection rule, and 53% by the sliding 

window rule. These percentages agreed with the space predictions in Chapter Five. 

Additionally, these percentages were similar to the results of the laboratory test cases. 

This similarity was a result of the algorithm used to generate hypotheses, rather than the 

effect of data. These percentages agreed with the space predictions in Chapter Five. 

Composition of Hypotheses 
Generated by Selection 

100% 

75% 

50% 

25% 

0% 

D Sliding Window 

■ EOSW 

B Chunking 

4        5 

Test Case 

Figure 30 -- Composition of Hypotheses Generated by Selection for Test Cases 1-8 

The second important aspect of space performance is the composition of 

constructed hypotheses. This aspect was useful for showing a change in the composition 

of the hypothesis list when the selected hypotheses were used for construction. Across 

all laboratory cases, 0.2% of all constructed hypotheses were based upon chunking 

selection rule hypotheses, 40% were based upon every other byte sliding window 

selection rule hypotheses, and 59% were based upon sliding window selection rule 

hypotheses. Across all operational cases, 0.3% of all constructed hypotheses were based 
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upon chunking selection rule hypotheses, 39% were based upon every other byte sliding 

window selection rule hypotheses, and 60% were based upon sliding window selection 

rule hypotheses. The results between the laboratory and operational tests were essentially 

equivalent. Again, these results showed the construction algorithm as the determinant for 

the composition of hypotheses, rather than the data that was used. The results for the 

laboratory test cases are depicted in Figure 31. 

Composition of Hypotheses 
Generated by Construction 

75% ------ 

50% --_     —     —    - 

:iH 
12       3       4 
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III               ■ Chunking 

TTTT 
5       6       7       8 

Case 

Figure 31 - Composition of Hypotheses Generated by Construction for Test Cases 1-8 

The third space performance aspect is the composition of hypotheses constructed 

by the constructive operators. Figures 32 and 33 show this composition. These results 

showed that the OR and XOR constructive operators constructed a majority of 

hypotheses that remained in the system after hypotheses ordering.  The results for these 

operators reflected the effect of fewer biases that constricted the choice of hypotheses 

used for construction. 
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Composition of Hypotheses Constructed 
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Figure 32 ~ Operator Composition of Constructed Hypotheses for Test Cases 1-8 

Composition of Hypotheses Constructed 
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Figure 33 - Operator Composition of Constructed Hypotheses for Test Cases 9 -11 

The final aspect of the space performance of MERCURY is the number of 

hypotheses generated by selection and construction, combined. Based upon the 

combinatorial process of constructing hypotheses, the number of constructed hypotheses 

was much greater than the number of selected hypotheses. The total number of 

hypotheses was dependent upon the examples. The range of selected hypotheses was 
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750-1,600 hypotheses, while the range of constructed hypotheses was 250,000 to 910,000 

hypotheses as shown in Figures 34 and 35. 

Number of Hypotheses Generated by Selection and 
Construction 
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Figure 34 - Number of Hypotheses Generated for Test Cases 1-8 

Number of Hypotheses Generated by Selection and 
Construction 
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■ Construction 

□ Selection 

□ Construction 

Figure 35 -- Number of Hypotheses Generated for Test Cases 9 ■ 11 
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6.5.    Power and Purity 

The next performance dimension of MERCURY is power and purity. As 

discussed in Chapter Five, power measured the number of examples that the hypothesis 

classified, either correctly or incorrectly, while purity gauged the correctness of the 

classifications that the hypothesis made. These measurements provided a local view of 

the performance of MERCURY. The following subsections explore the power and purity 

of hypotheses in MERCURY from the laboratory and operational test cases. This 

exploration looks at five aspects of power and purity: selection, construction, analysis of 

selection methods, analysis of operators, and overall results. This section provides a 

foundation for the process optimization section, which will explore the effects of the 

different system parameters upon power and purity. 

The power and purity scores were the weighted average of the raw power and 

purity scores that were stored in the hypotheses, in relation to the number of hypotheses 

with that score combination. These hypotheses were considered in the same hypothesis 

class. This weighted average was used to account not only for the best performers, but 

also for the amount of processing the system required to induce those hypotheses. 

The power and purity scores were analyzed by self and nonself. This distinction 

was necessary due to the composition of the test cases, which have eight self and two 

nonself files. Without this distinction, nonself hypotheses with the optimal power score 

of 20% and an optimal purity score of 100% would not be distinguished from suboptimal 

self hypotheses with the same scores. The power and purity scores of each hypothesis 
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were weighted by the number of examples in the concept that the hypothesis should be 

able to classify, allowing for direct comparison of the values. A consequence of this 

weighting was that overclassification is indicated by a power score greater than 100%. 

MERCURY should be able to induce hypotheses with a power score greater than 12.5% 

for self and 50% for nonself. These scores indicate hypotheses that only detect one 

example, reflecting a performance equivalent to chance. 

6.5.1.  Laboratory Test Cases 

The first aspect of power and purity is the average power and purity scores for 

selection.  Based upon the laboratory test cases, the average power score for self was 

66.5% and 86.9% for nonself, while the average purity score for self was 96.0% and 

100.0% for nonself. These values indicated that a large number of the selected 

hypotheses were good detectors. This inflated result was possibly due to the contrived 

nature of the laboratory test cases. The average scores for the different selection rules are 

illustrated in Figure 36 and 37.  These graphs show that the selection rules appeared to 

have no relation to the power, while the every other byte sliding window selection rule 

appeared to be a poor performer for purity. 
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Average Selection Scores for Power 
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Figure 36 ~ Average Selection Scores for Power for Test Cases 1-8 
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Figure 37 ~ Average Selection Scores for Purity for Test Cases 1 - 8 

While the average power and purity scores show the overall state of the system, 

the detectors utilized as signatures will most likely be the hypotheses with the maximal 

power and purity scores. The maximal power score was 100% for both self and nonself, 

while the maximal purity score was 97% for self and 100% for nonself. These results 

were the maximums across all the test cases. 

The second aspect of power and purity is the average power and purity scores for 

construction.  Based upon the laboratory test cases, the average power score for self was 
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60.8% and 149.6% for nonself, while the average purity score for self was 96.9% and 

98.3% for nonself. These values decreased in relation to their counterparts for selection. 

Test cases 5 and 6 were designed to reduce the performance of the constructive operators. 

Test case 5 was designed to reduce the effectiveness of the logical operators, while 

increasing the effectiveness of the spatial operators. Since the space performance 

analysis showed that more hypotheses constructed with logical operators were kept in the 

system, this test case artificially inflated overclassification. Test case 6 was designed to 

eliminate the number of possible unique patterns between self and nonself. With no 

unique patterns to distinguish, this test case forced all hypotheses to overclassify. 

Statistical evidence of these conclusions is presented in the process optimization section 

of this chapter. 

The average scores for the different selection rules are illustrated in Figure 38 and 

39.   These graphs showed that constructed hypotheses, based upon the sliding window 

selection rule, had the most overclassification, with a nonself average power of 184%. 

Additionally, constructed hypotheses based upon the chunking selection rule and the 

every other byte sliding window selection rule have similar power and purity scores. 
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Figure 38 ■- Average Construction Scores for Power for Test Case 1-8 
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Figure 39 - Average Construction Scores for Purity for Test Case 1 - 8 

Another aspect of the power and purity performance of construction is the choice 

of constructive operators. The average performance of the constructive operators is 

shown in Figures 40 and 41. Figure 40 fails to show the full extent of the 

overclassification caused by the AND operator, which had an average power of 273%. 

174 



Average Operator Scores for Power 
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Figure 40 - Average Operator Scores for Power for Test Cases 1-8 
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Figure 41 - Average Operator Scores for Purity for Test Cases 1-8 

175 



•c z 
3 

c 

u   o 
s z 
o 

a 

ÖS 84 ÖS 
o o o 
O O Q 
o o o 

83 83 o- 
o o S 
» a 2 

83 83 84 
o o o 
odd 
in m m 

sä * a« 
in m »n 
ts r4 *>i 

g3 83 Ö? 
o o o 
odd 
o o o a z     s = = 

83 ts 83 
o o o 

si 

«a 
00 

PS 
[*: 

«a 

V» 

1^ 8 
■a O » 
UWB 

t/1 t— O  VO s* 
Os ON 

«W fS 83 g3 
sn o o o >ä 

M S o d d Cs* o o o * 
£ 

& 

a # is £ ? o i« 
cc o o 2 » 8 

~ Ü 
CM S3 Ö? Ufa # 

r? g o o o « 
u 
a 
B. 

o o o 
z o o o 

u 
en 

«M 

50 

o 
d o 

#1 
«8 

«a 

»—i ©\ 

0) * 83 83 
<U g en vo en 
* vo t-  VO 
o z oo 00   00 

M 
U Si * 83 
> o m os 1L* < to en os 

so 

K 
sa 

«0 

#    $    £ 
ci q sb 

8 2 «» o   S3 

£ 83 8? 
o o SB 
oda' 

""   00 00   00 

8« B« # 
O  O  S3 
do«; 
m m V) 

83 83 83 
m in in 
o) ri <vj 

* e? e? 
O  O S3 

§' 2 «> o SB 

«Sä g? ^ 
O   O  SB 
oos' 
O   O   SB 

83 8« 8« 
O  O S3 

2 «s O S3 8 

83 83 {£ 
O © S3 
in in in 
tS CN «N| 

83 8« g? 
O   O   SB 
OOtj 
O   O  SB 

83 83 83 
"1 —. ■» 
Er !C •< OS Os  ON 

8« 8« 8? 
os ""! W) 
r- ■* ^f 
OO C- 00 

84 84 {£ 
—• CM <V) 
d -J SB' 
vo so so 

83 83 g3 
O O S3 
d d 55 o o 5 

* 8? £$ 
O O SB 
d d ca" 
00 00 00 

8? 8? # 
O O SB 
d d si 
>r> m V) 

84 gä ^ 
u-i in in 
ri ri ri 

84  84  84 
O   O  SB 
odsj 
O   O  SB 

84 84 8? 
O O SB 
d d SB' 
O O SB 

84 8? 8* 
O  O  SB 

8'8g 

84 84 84 
O O SB 
in m' in 
CN tN »sj 

84 84 8« 
O  O  SB 
odsi 
O   O  S3 

84 04 J^ 
oo in so 
so ■* so 
OS OS   OS 

84 84 # 
—i VO Os 
d os so 
os r-- oo 

8? 84 B? 
^ "**. ^ 
(N CS (SJ 
VO VO V£> 

1^1 
g = ^ 

84 84 E^ 
O O S3 
d d SB' 
oo oo 00 

84 84 ^ 
O   O   SB 
ddsj 
m m in 

84 84 # 
mm in 
ri (N r4 

84 84 8? 
O O S3 
d d SB' 
O O S3 

8? 8? 8? 
O   O S3 
§d S3" 

O S3 

84 84 8? 
O O S3 
d d si 
o 5 S 
m — in 

84 84 84 
o q SB 
m' in in 
(S SS «sj 

got? 
ON   X   0\ 

# # # 
m ON © 
r^ ^ sd 
ON ON 0\ 

g 83 8? 

84 84 gä 
»»IK 
Os   O   >' 
in vo so 

C
hu

nk
in

g 
C

hu
nk

in
g 

ng
 T

ot
al

 

E
O

SW
 

E
O

SW
 

T
ot

al
 

Sl
id

in
g 

Sl
id

in
g 

T
ot

al
 

pe
al

 
at

ia
l 

un
ki

 

1-afe ^SU 

L
og

i 
Sp

at
i 

£
0
5

 

L
og

i 
Sp

at
i 

si
m

 

3&$ 

ao 

«a 
«a 

■ 
«o' 

»»5 
00 
Os 

s 
e a 

■B 

m 
S 

*9   ^   ^   ,g 
O   P   <=   S 
P88S* oo S ^ 66       a s 

84 84 84 j£ 
O O O SB 
d d d SB' 
oo oo oo 00 

8? 8? 8« 8* 
O O O S3 
ö ö ö vi 
in in in in 

in in in in 
c*i c*i ei <NJ 

83 83 84 84 
o o q SB 
ö ö ö si 
O O O S3 

83 83 83 8? 
O O O SB 
ö ö ö si 
O O O S3 

84 84 84 # 
O O O SB 
ö ö ö si 
O O O SB 
in —< — in 

83 83 83 # 
o o m SB 

83 S3 83 
O O SB 
d d si 
o o S3 

83 83 g? 
O O S3 
d d SB' 
oo oo 00 

84 84 £ 
O O S3 
d d SB' 
in in in 

83 83 83 
m m in 
ri ri ri 

83 83 83 
O O S3 

2 S «> O O «3 

83 83 83 
O O S3 
d d SB' 
o o S 

83 83 g? 
O   O  S3 
OOsi 
O   O  SB 

83 83 83 
O   O  S3 

3 

1 

Si 

'S 
00 

s» 
00 

m >s^ 

!"0 

ifsi 

s» 

-     Si 

o x >3 D n «■ 

! 

i 
t y 

m m tN "n u-i »n "> if, 
M   N  - <S 
»-H    ^"    i-H ">< »—I l-H ~H 

iai'j 

^ 83 83 
oo <=. °. « 

83 
o 

83 
o 

83 
S3 

■* o o S o o K o o o 
o ss 00 

"■ " ">< OS 

# # # ^ 83 83 83 V# 
VO   00   00 "H r~ i— (N Os 
h in * ts ■* ■* ■*' \o 
ON   ON  ON Os OS Os 

.3      if 
S3         IS 

^ 83 83 
~   f-  Os 

83 83 83 

£2 en H JO 00 Os g? •a t^ t- ÄH ?£ csi -i. 
VO 
oo 

83 83 83 ^ # 83 83 ^ l\ 
Tt    t-    ■* K m <N »N uo 
O   —   Os »—i <—i «S 
in t~- en NO VO SO m 

U 

H 
u 

«2 

ä 

I 
E s 

5 

! 

uoipaps uoipnjjsuo3 S3JO}BJ3do 

176 



An overall analysis of the results for the laboratory test case is provided in Table 

20. These results showed that the average power score increased from selection to 

construction, 70.6% to 78.6%, respectively. The average power score was based upon a 

proportion of the averages for self and nonself power and the number of self and nonself 

examples. This increase indicated that the constructive induction process appeared to 

help learn detectors for files. However, the average purity score decreased for both self 

and nonself examples. A comparison of maximum power for selection and construction 

provided little information since overclassification resulted in power scores greater than 

100%. Looking at the maximum values when overclassification exists falsely inflated the 

worth of the overclassified parameter. 

6.5.2.   Operational Test Cases 

The operational test cases reflected a "real world" view of the performance of 

MERCURY. The individual test cases were not designed to reduce the performance of 

one aspect of the system in order to test another aspect, as occurred with the laboratory 

test cases. This section will analyze these test cases with respect to the power and purity 

scores from selection, construction, construction with respect to each selection method, 

construction with respect to each operator. It also provides an overall view of the test 

cases. 
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The first aspect of the power and purity performance is the average power and 

purity for selection. All hypotheses induced for the operational test cases had a purity of 

100% for both self and nonself. Since purity was not a varying parameter in the 

operational test cases, it will not be discussed further in this section. 

During the operational test cases, MERCURY was able to generate detectors with 

an average power score of 12.7% for self and 50% for nonself. These power scores were 

equivalent to the chance scores of 12.5% for self and 50% for nonself. The selection 

rules did not vary the average power scores, as can be seen in Figure 42. The maximum 

power for self hypotheses was 37.5% and 50% for nonself detectors. 

Average Selection Scores for Power 
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Figure 42 ~ Average Selection Scores for Power for Test Cases 9-11 

The next aspect of the power and purity performance of the operational test cases 

is the average power for construction, which were 22.6% for self and 66.9% for nonself. 

These scores were not equivalent to the chance scores of 12.5% for self and 50% for 

nonself. Additionally, the maximum power score was 62.5% for self and 100% for 

nonself. The average and maximum power scores both increased from selection to 

construction. 
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Average Construction Scores for Power 
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Figure 43 -- Average Construction Scores for Power for Test Cases 9-11 

The above figure shows that the power scores for constructed hypotheses vary 

slightly with the selection rule, upon which the hypothesis is based. Table 21 shows that 

the best performing hypotheses were constructed using the sliding window selection rule; 

their maximum power was 62.5% for self and 100% for nonself. The process 

optimization section will continue to explore the relationship between power and the 

various selection rules. 

The next aspect of the power performance of the operational test cases is the 

effect of the constructive operators. Figure 44 portrays the relationship between the 

constructive operators and power.   The OR and XOR operators have different power 

scores than the other operators. OR had an average power score of 23.9% for self and 

75.2% for nonself, while XOR had an average power score of 25.4% for self and 100% 

for nonself. The maximum power scores for both OR and XOR were 62.5% for self and 

100% for nonself. These scores were also the maximum across all the operators. 
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Average Operator Scores for Power 
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Figure 44 -- Average Operator Scores for Power for Test Cases 9 -11 

The overall power and purity performance can be found in Table 21. As stated 

above, the purity of all the hypotheses was 100%. The average power across the self and 

nonself concepts increased from 20.2% for selection to 31.5% for construction. This 

increase shows that MERCURY was able to create better hypotheses. This finding is 

supported by the increase in maximum power for self from 37.5% to 62.5% and for 

nonself from 50% to 100%. 
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6.6.    Coverage 

The fourth dimension of the performance of MERCURY is coverage. This 

measurement provided information about the global behavior of MERCURY. As defined 

in Chapter Five, coverage is the number of hypotheses that classify, misclassify and fail 

to classify each example. Coverage can be used to determine the classification rate, or 

the percent of examples that are classified, misclassified or not classified by the 

hypotheses. The following subsections provide a discussion of the classification rate of 

MERCURY. 

The power and purity results for the laboratory test cases showed that some 

hypotheses overclassified. The coverage results in Figure 45 showed that for test cases 5 

and 6 the nonself files were misclassified. In test case 5, hypotheses were induced that 

either classified or failed to classify the self examples. In addition, a large number of 

hypotheses were induced that misclassified the nonself files, with a smaller number either 

failing to classify or correctly classifying these files. These results indicated that 

hypotheses were induced having the ability to classify the nonself files, while not 

misclassifying the self files. While a definitive conclusion can not be reached without 

determining which hypothesis classified which examples, it is probable that a smaller 

subset of the hypothesis list from test case 5 could have classified each example in the 

training set. However, no subset could be derived for test case 6. With the files the same 

for both self and nonself, finding a detector with the ability to distinguish the two 
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concepts is impossible. The results concurred with this analysis, since no hypotheses 

were able to classify the nonself examples correctly. 

Coverage by Selection and Construction 
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Figure 45 ~ Coverage for Test Cases 1-8 

The coverage results for the operational test cases are graphed with respect to 

classification in Figure 46. These results show that all hypotheses had 100% purity, each 

example was classified and there were no misclassifications. 
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Figure 46 ~ Coverage for Test Cases 9 -11 
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6.7.    Process Optimization Through Response Surface Methodology Techniques 

Response surface methodology (RSM) is a collection of statistical and 

mathematical techniques useful for developing, improving, and optimizing processes 

[MyM95]. This technique is useful in applications where several input variables 

potentially influence some performance measure or quality characteristic of the product 

or process. The input variables are sometimes called independent variables, and are 

subject to the control of the engineer or scientist, at least for the purposes of the 

experiment. The performance measure or quality characteristic is called the response. 

The general objective of the RSM process is to find values for the input variables that 

yield a desired, often "optimal" response. 

Since the form of the true response function/is unknown, it must be 

approximated. The successful use of RSM is critically dependent upon the 

experimenter's ability to develop a suitable approximation for/. A response surface is 

the geometric representation of a response function. [Hil98] 

The ability to observe the response of a system is often skewed by variability and 

uncertainty. If repeated observations of the system are made at the same set of input 

conditions, the responses observed may vary from observation to observation because of: 

measurement errors, variability in the "experimental material", or the influence of other 

variables not accounted for. 

After observing the response at different sets of values of the input variables, an 

attempt is made to use this information to develop a parsimonious approximation to the 

response function referred to as the empirical model. RSM comprises a set of statistical 
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and mathematical techniques for empirical model building and exploitation that 

encompasses [Hil98]: 

1. Designing a series of experiments that will yield adequate and reliable 

measurements of the response(s) of interest in a region of interest. 

2. Analyzing the results of those experiments to determine an empirical 

model that best fits the data collected 

3. Searching for the optimal settings of the input variables that produce a 

desired response 

These techniques include: 

1. Designed Experiments - an experimental process of inducing 

purposeful changes in the input variables in order to observe and 

model the changes in the response 

2. Regression Analysis - statistical techniques used to model the response 

as a linear combination of various forms of the input variables and 

their interactions 

3. Steepest Ascent - a gradient search technique that helps us to "scale 

the heights" of the response surface 

This research is targeted at demonstrting that constructive induction provides a 

suitable learning mechanism for the virus detector system of an individual computer 

system. Based on the empirical analysis of MERCURY'S results, presented above, the 
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hypothesis that constructive induction provides a suitable learning mechanism for the 

virus detector system of an individual computer system can not be accepted or rejected. 

The RSM methodology can be applied to the constructive induction approach to 

the virus detection domain. The output from the testing of MERCURY can be 

manipulated using statistical and mathematical techniques, in order to possibly improve 

and optimize the process of virus detection using the constructive induction approach. 

The input variables influencing the performance and quality of the virus detection are 

numerous. These independent variables are listed in the following table; each is defined 

by its name, type, and range. 

Table 22 - RSM input variables 

Input Variable Type Range 
Test Case Number Nominal 1-11 
Number of Hypotheses Generated Continuous 1 -1,000,000 

Method used for Hypothesis 
Generation 

Nominal Chunking, EOSW, Sliding 
Window 

Operator used for Hypothesis 
Generation 

Nominal NONE, AND, OR, XOR, 
BEFORE, DISTANCE 

Hypothesis Label Nominal Self or Nonself 

Induction Type Nominal Selective or Constructive 

Each of these input variables could potentially contribute, in varying degrees, to 

the quality of the response, which in our case is the "goodness" of constructive induction 

applied to the virus detection domain. Specifically, this "goodness" is measured through 

two scores of power and purity for each class of hypotheses. A class of hypotheses are 

those generated by the same combination of constructive operators and selection rule, and 

yielding the same scores for power and purity. Each hypothesis within a class might 

represent a different group of features; however, this research focused upon the 
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generation method.   Therefore, these two scores will be utilized as the response variables 

intended for optimization. The response variables are defined in the following table, by 

name, type, and range. The general objective of this RSM process is to find values for 

the input variables that yield an "optimal" response for power and purity. 

Table 23 -- RSM response variables 

Response Variable 
Power 
Purity 

Tyjie. 
Continuous 
Continuous 

Range 
0.0-1.0 
0.0-1.0 

The data produced by MERCURY contains a certain amount of variance, some of 

which can be explained. The output generated by MERCURY exhibits a high degree of 

variability between test cases and a low degree of variability within test cases. The 

variability between test cases is most evident between test cases 1 through 8 and between 

the "group" 1 through 8 and the "group" 9 through 11. The heterogeneity between test 

cases was primarily driven by the objectives of each test case. Test cases 1 through 8 

represent contrived, laboratory test cases, whereas 9 through 11 represent the operational 

test cases, with byte patterns extracted from "real-world" non-infected files and "real- 

world" virus files. The low variability within test cases could be explained by the small 

size of individual test cases, the small size of extracted byte patterns, and the method of 

contriving the test cases in order to test the functionality of certain generation methods 

and constructive operators. 

MERCURY was tested on 11 test cases, using different sets of values of the input 

variables. However, the process optimization techniques will only be applied to the 

operational test cases. The laboratory test cases were only used to verify and validate 
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MERCURY, which renders them unsuitable for optimization. The primary RSM 

technique used in this dimension of analyses is regression analysis, which attempts to 

model the response as a linear combination of various forms of the input variables and 

their interactions. These analyses will examine the output for the operational test cases to 

determine the existence of a parsimonious, empirical model. The RSM techniques will 

also determine which input variables have the greatest effect on the responses of power 

and purity, and determine the optimal "settings" of the input variables which produced 

the optimal responses. 

The following sections present the findings of the RSM study. All analyses were 

obtained using the JMP Statistical Analysis Program. The first section describes the 

distribution characteristics of the data set, and makes provisions for their analyses. 

6.7.1.  Analyzing the Distribution of Data 

A normality test was conducted on the test cases, using the Shapiro Wilk Test for 

Normality. These tests concluded that the data set was not normally distributed. If the p- 

value is less than 0.05 or some other alpha, conclusions of a non-normal distribution can 

be made. The following table, showing the results of the normality test, which supports 

the conclusion of non-normality. The purity scores were all 1.0 for the operational test 

cases; therefore, they were not tested or analyzed. 
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Table 24 ■- Test for Normality 

Shapiro-Wilk W Test - Test for Normality 

Test Case Group 

9-11 

Response 
Power 
Purity 

W 
0.785653 

p-value 
0.0000 

Based on these results, nonparametric tests were used for this data. These types 

of tests do not depend upon a normal distribution of data; nor do they depend on the 

assumption that the population from which the sample was taken is normal [A1190]. The 

assumptions for nonparametric tests are that the samples are independent from each 

other, their variances are constant, and their residuals are normally distributed. 

Nonparametric methods are often computationally simpler and easier to understand; 

however, they also have some disadvantages. One disadvantage is that they tend to be 

less sensitive than their parametric counterparts and thus require stronger evidence to 

reject a null hypothesis [A1190]. 

The first assumption of independence is satisfied, based upon the deterministic 

qualities of MERCURY. The second assumption of constant variance is partially 

satisfied. Based on the results presented in the following three tables, variance across 

methods and labels is constant, though variance across operators is not constant. These 

conclusions are based on at least one test for each group, where the probabilities greater 

than 0.05 showed constant variance, and probabilities less than 0.05 showed non-constant 

variance. 
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Table 25 ~ Tests that the Variances are Equal across Operators 

Test F Ratio DFNum DFDen Prob>F 
0'Brien[.51 8.5902 5 162 <.0001 
Brown-Forsythe 3.2398 5 162 0.0081 
Levene 6.0585 5 162 <.0001 
Bartlett 6.1502 5 ? <.0001 

Table 26 ~ Tests that the Variances are Equal across Methods 

Test F Ratio DFNum DFDen Prob>F 
O'Brienr.51 0.9712 2 165 0.3808 
Brown-Forsythe 1.4102 2 165 0.2470 
Levene 1,7973 2 165 0.1690 
Bartlett 1.2445 2 ? 0.2881 

Table 27 ~ Tests that the Variances are Equal across Labels 

Test F Ratio DFNum DFDen Prob>F 
O'Brienr.51 38.6499 1 166 <.0001 
Brown-Forsythe 3.7111 1 166 0.0558 
Levene 63.1145 1 166 <.0001 
Bartlett 30.1749 1 ? <.0001 

The third assumption of normally distributed residuals is not satisfied. The 

following figure shows the distribution of residuals. Based on the results of the Shapiro 

Wilk Test for Normality, with a p-value of <. 0001, these tests concluded that the 

residuals were not normally distributed. Although not all three assumptions for 

nonparametric testing were fully satisfied, the analyses will use this form of testing. 

Since the data from the test cases are nominally scaled, the applicability of variance and 

normality could be lessened. 
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Figure 47 -- Distribution of Residuals 

6.7.2.  Analyses on Test Cases 9 through 11 

6.7.2.1.     Preliminary Analyses 

The analysis on the operational test cases used the input variables Test Case 

Number, Number of Hypotheses Generated, Method used for Hypothesis Generation, 

Operator used for Hypothesis Generation, and Hypothesis Label as factors affecting the 

responses of power. There are no tests for purity, since all the hypotheses had a score of 

1.0 across all test cases. 

For each of these variables, a pictorial representation of the data is presented, 

showing the range, mean, and distribution of the power scores. The tables following each 

figure show the results of the Wilcoxon / Kruskal-Wallis Test, a nonparametric tool that 
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tests whether group medians are the same across all groups. The usual analysis of 

variance assumption of normality is not made. "Prob>ChiSQ" is the probability of 

obtaining by chance alone a chi-square value larger than the one calculated if, in reality, 

the distributions across factor levels are centered at the same location [A1190]. Observed 

probabilities of 0.05 or less are often considered as evidence that the distributions across 

input variable levels are not centered at the same location. Assumptions of the Kruskal- 

Wallis Test are that the populations have identical shape and variation, and that they are 

not normally distributed. 
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Figure 48 -- Pictorial View of Power across Test Cases 

Table 28 - Wilcoxon/Kruskal-Wallis for Differences in Power across Test Cases 

Wilcoxon / Kruskal-Wallis Tests (Rank Sums) 

Level Count Score Sum Score Mean (Mean-Mean0)/Std0 

9 51 4307 84.4510 -0.007 

10 55 4580.5 83.2818 -0.232 

11 62 5308.5 85.6210 0.234 

1-way Test, Chi-Square Approximation 

ChiSquare DF Prob>ChiSq 

0.0721 2 0.9646 
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Figure 49 - Pictorial View of Power across Operators 

Table 29 - Wilcoxon/Kruskal-Wallis for Differences in Power across Operators 

Wilcoxon / Kruskal-Wallis Tests (Rank Sums) 

Level Count Score Sum Score Mean (Mean-Mean0)/Std0 

AND 24 1762 73.4167 -1.244 

BEFORE 22 1628 74.0000 -1.120 

DISTANCE 21 1561 74.3333 -1.056 

NONE 24 1762 73.4167 -1.244 

OR 45 4346 96.5778 2.010 

XOR 32 3137 98.0313 1.805 

1-way Test, Chi-Square Approximation 

ChiSquare DF Prob>ChiSq 
10.3443 5 0.0660 
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Figure 50 — Pictorial View of Power across Methods 

Table 30 - Wilcoxon/Kruskal-Wallis for Differences in Power across Methods 

Wilcoxon / Kruskal-Wallis Tests (Rank Sums) 

Level Count Score Sum Score Mean (Mean-Mean0)/Std0 

CHUNKING 42 3586.5 85.3929 0.140 

EOSW 52 4267.5 82.0673 -0.447 

SLIDING_WINDOW 74 6342 85.7027 0.292 

1-way Test, Chi-Square Approximation 

ChiSquare DF Prob>ChiSq 

0.2023 2 0.9038 
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Table 31 - Wilcoxon/Kruskal-Wallis for Differences in Power across Labels 

Wilcoxon / Kruskal-Wallis Tests (Rank Sums) 

Level Count Score Sum Score Mean (Mean-Mean0)/Std0 

NONSELF 63 8406 133.429 10.435 

SELF 105 5790 55.143 -10.435 

1-way Test, Chi-Square Approximation 

ChiSquare DF Prob>ChiSq 
108.9314 1 <.0001 
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Based on the results from the figures and tables above, the following conclusions 

can be drawn. The power scores of each test case are not significantly different from 

each other, shown by a probability score of 0.9646. These are the expected results, since 

the examples in these test cases were generated from "real world" files. 

The power scores generated by the different operators are statistically different, 

proven by the probability value of 0.0660. In order to accept the conclusion of 

difference, an alpha of 0.10 is required, as opposed to 0.05, which provides less 

confidence in these results. This test is significant because it proves that at least one 

operator or group of operators provided a better measure of power than the other 

operators. By observation, it could be concluded that OR and XOR are better operators, 

based on their high power scores of 96.5778 and 98.0313, respectively. These scores 

were obtained from Table 29. By performing additional tests, it can be shown which 

operator is different. Isolating the four variables believed to be similar, AND, NONE, 

BEFORE and DISTANCE, the test below confirms they are statistically the same. 

Table 32 - Wilcoxon/Kruskal-Wallis for Differences in Power across FOUR OPERATORS 

Wilcoxon / Kruskal-Wallis Tests (Rank Sums) 

Level Count Score Sum Score Mean (Mean-Mean0)/Std0 

AND OP 24 1101.5 45.8958 -0.019 

BEFORE 22 1013.5 46.0682 0.010 

DISTANCE 21 969.5 46.1667 0.030 

NONE 24 1101.5 45.8958 -0.019 

1-way Test, Chi-Square Approximation 

ChiSquare DF Prob>ChiSq 

0.0020 3 1.0000 

If the OR operator is added to this group of four, the similarity of the OR operator 

with the remaining operators can be tested. Running the same tests yielded a probability 
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score of 0.1224, concluding the operators are similar, using an alpha of 0.05.   Similar 

results were obtained when XOR was added to the group of four operators, giving a 

probability value of 0.1751. Finally, XOR and OR were compared, resulting in a 

probability score of 0.8867. Though not statistically proven, some conclusions can be 

drawn by observation. The XOR and OR operators likely yield a higher power score than 

the other operators. This information may be useful when ordering the operators for use 

in a constructive induction approach to virus detection. If the more useful operators are 

used first, the computational complexity of the entire operation may be improved. 

Since "NONE" was used as the operator for the selection method, the 

implications are that selection did not produce a power score significantly different from 

the power scores produced when using a constructive operator. This test should not be 

used alone to discount the effects of construction over selection. Since the sample sizes 

were so small, and sensitivity could be lost with nonparametric tests, further 

investigations would be needed to conclude the effectiveness of this learning method. 

The probability value of the Chi-square test for the label test is <.0001, implying a 

difference exists in the score for power due to the label of self or nonself. Hypotheses 

generated to detect nonself have a statistically better power score than those generated to 

detect self. 

In both cases of power and purity, results could be skewed by the fact that there 

was a 4 to 1 ratio of self files to nonself files in the example set. The possible values of 

power for nonself were {0%, 50%, 100%}; the possible values of power for self were 

{0%, 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, 87.5%, 100%}. The disparity between 

these two sets could have artificially inflated the effects of the hypothesis label on power. 
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Since purity is a measure of how correctly the hypothesis classifies the examples, this 

score could also be affected by the difference. 

6.7.2.2.     Regression Analyses 

To confirm the findings from the nonparametric tests, a regression test was run, 

which tested the "effects" of the input variables on the specified response of power. 

Though the data set was not normally distributed, these regression tests are robust enough 

to allow for non-normality. The results of these tests are derived from a model that 

exhibited a "good fit." 

There are three primary measures that assess a fitted model: MSE, R and F. A 

"good" model will be significant, as indicated by a "large" value of F, exhibit a "small" 

error component MSE and explain most of the variation in the responses by having a 

"large" R2. 

Table 33 - Analysis of Variance (ANOVA) Table for the Power Model 

Source DF Sum of Squares 
Mean 

Square 
F Ratio 

Model 11 8.611177 0.782834 42.9359 
Error 156 2.844289 0.018233 Prob>F 

C Total 167 11.455466 <.0001 
Label 1 6.2961494 345.3233 <.0001 

The Analysis of Variance (ANOVA) table above shows the significance of this 

model through the "large" F Ratio of 42.9359. This indicates at least one of the input 

variables is contributing significantly to the model. The Mean Square Error (MSE) 

provides a measure of the variability within the residuals and provides a measure of how 
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well the fitted responses match those observed. The table above shows the "small" error 

value of 0.018. In the following table, the R2 value of 0.75 represents the proportion of 

the variability within the observed responses that can be explained or accounted for by 

the model. Additionally, developing a "best" model usually involves finding a model 

that has the above characteristics and is "parsimonious", meaning it involves the fewest 

parameters. It is difficult to just delete parameters, this process is often facilitated by 

testing the addition or removal of the variables. [Hil98] 

The model derived here is a "good" model, meaning it can be used to gain 

insightful knowledge into the important factors affecting the power response. This could 

be very useful in the application of constructive induction to virus detection. As stated 

previously, the computational complexity of this learning method is extreme. A method, 

such as regression can help pinpoint and guide the learning process by identifying early 

in the process the important variables and the settings needed to optimize the desired 

responses of high power and high purity. 

Table 34 depicts the results of the effect test for the model. This test shows the 

impact of variables on the response of power. The F test is used to determine if all 

settings of a variable have the same effect. The null hypothesis states all settings have 

equal means, and the alternative hypothesis states that at least two means are different. 

The variable settings with "large" F ratios and "small" probabilities, of less than alpha, 

reject the null hypothesis. Using an alpha of 0.05, the most significant effects are the 

operator, method, and label. This indicates that at least one setting within each variable 

has a different mean than the others. Further analyses, using the parameter estimates' t 

tests indicated which settings were the most significant. 
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Table 34 - Effect Test for the Power Model 

Source Nparm DF Sum of Squares F Ratio Prob>F 

Test Case 2 2 0.018 0.519 0.5957 

Operator 5 5 1.783 19.56 <.0001 

Method 2 2 0.145 3.98 0.0204 

Label 1 1 6.296 345.32 <.0001 

Table 35 shows the parameter estimates for the variables and their settings, and 

their tests of significance. Since the input variables are nominal, each term symbolizes a 

particular variable setting compared to the rest of the settings for that variable [SAS95]. 

For example, the term "Operator[AND-XOR]" symbolizes the effect of the AND 

operator compared to the group containing the rest of the operators. A t test is performed 

which indicates the significance of that particular variable setting. This tests whether the 

setting of a particular variable is statistically different from the other settings of that 

variable. The null hypothesis states all settings are equal, and the alternative hypothesis 

states that a particular setting is not equal. The variable settings with "large" t ratios and 

"small" probabilities, of less than alpha, reject the null hypothesis. Using an alpha of 

0.05, all of the operators and both of the label variables produced high t ratios, meaning 

these terms are significantly different from each other. With an alpha of 0.10, the method 

of chunking becomes significantly different than the other two generation methods. The 

other generation methods and the specific test cases do not appear to be significantly 

different from each other. 
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Table 35 - Regression Information for the Power Model 

Summary of Fit 

RSquare 0.751709 
RSquare Adj 0.734201 
Root Mean Square Error 0.135028 
Mean of Response 0.385893 
Observations (or Sum Wgts) 168 

Parameter Estimates 

Term Estimate Std Error t Ratio Prob>ltl 

Intercept 0.4202101 0.011644 36.09 <.0001 

TestCase[9-m -0.007323 0.015182 -0.48 0.6303 

TestCasejlO-lll -0.007414 0.014863 -0.50 0.6186 

Operator[AND-XORl -0.064471 0.025034 -2.58 0.0109 

Operator[BEFORE-XORl -0.07446 0.025924 -2.87 0.0046 

Operator[DISTANC-XORl -0.078363 0.026439 -2.96 0.0035 

Operator[NONE-XORl -0.070195 0.025241 -2.78 0.0061 

Operator[OR-XORl 0.1033423 0.020025 5.16 <.0001 
MethodrCHUNKIN-SLIDING] -0.031237 0.016629 -1.88 0.0622 

Method[EO SLID-SLIDING] -0.008616 0.015363 -0.56 0.5757 

LabelfNONSELF-SELFl 0.2101124 0.011307 18.58 <.0001 

Breaking the model down even further, additional analyses can be conducted. 

The least squares means are predicted values from the specified model across the levels 

of each variable setting, where the other variables are controlled by being set to neutral 

values. The least squares means are the values to examine to see which levels produce 

higher responses from power, holding the other variables constant [SAS95]. The 

following three tables show the least squares mean scores for the operators, methods, and 

labels. XOR and OR appear to give the largest power scores of all operators, sliding 

window appears to give the highest power score of all methods, and hypotheses with the 

nonself label appear to have higher power scores. 
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Table 36 - Least Squares Means for the Operators 

Least Squares Means 

Level Least Sq Mean Std Error Mean              I 

AND 0.342110 0.027985 0.30416 

BEFORE 0.332121 0.029111 0.30909 

DISTANCE 0.328219 0.029712 0.31190 

NONE 0.336387 0.028284 0.30416 

OR 0.509924 0.020420 0.46555 

XOR 0.590728 0.024710 0.49781 

Effect Test 

Sum of Squares F Ratio DF Prob>F 

10.3443 19.5647 5 <.0001            | 

Table 37 - Least Squares Means for the Methods 

Least Squares Means 

Level Least Sq Mean Std Error Mean 

CHUNKING 0.375345 0.021602 0.40357 

EOSW 0.397965 0.019127 0.37942 

SLE)ING_WINDO 
W 

0.446435 0.016673 0.38040 

Effect Test 

Sum of Squares F Ratio DF Prob>F 

0.14544740 3.9887 2 0.0204 

Table 38 - Least Squares Means for the Labels 

Least Squares Means 

Level Least Sq Mean Std Error Mean 

NONSELF 0.616694 0.017767 0.64285 

SELF 0.196469 0.014186 0.23171 

Effect Test 

Sum of Squares F Ratio DF Prob>F 

6.2961494 345.3233 1 <.0001 
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6.7.3.  Utilizing Process Optimization 

In order to show the useful application of the process optimization techniques 

discusses above, a case study of their utilization was simulated. Since insight was gained 

about the effects of different operators on the response of power, this knowledge was 

included in a simulation of MERCURY. This simulation only used the OR and XOR 

operators to construct new hypotheses. The results from this simulation are presented 

below. 

Power of construction Power of construction 
before optimization after optimization 

22.6% self 25% self 
66.9% nonself 83% nonself 
31.5% overall 36.3% overall 

The results show an increase of average power scores for both self and nonself 

hypotheses. The overall weighted average also increased. Additionally, this optimized 

simulation produced 18.4% fewer hypotheses. By knowing the effects of the OR and 

XOR operators, they can be used more effectively in the inductive process. They 

produced a better average, and decreased some of the computational growth. Though this 

decrease is small, it represents only a small tidbit of a priori knowledge. If combined 

with other pieces of knowledge, the computational growth could be reduced even further. 
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6.7.4.  RSM Conclusions 

The results of these tests provided evidence that statistical methods, like the ones 

used in RSM processes, can provide empirical analysis and knowledge that could make 

the constructive induction learning process more efficient. Although little insight could 

be gleaned from the first group of tests cases, the second group of test cases was able to 

demonstrate the capabilities of process optimization technique. Since the main 

disadvantage of constructive induction is its computational explosion, these results 

provide mathematically-based methods that could decrease its computational complexity, 

by providing knowledge about the problem domain a priori. 

Based on the knowledge obtained from the last three test cases, future runs of 

MERCURY could be optimized by utilizing the sliding window method before other 

methods. In addition, construction could begin with the XOR and OR operators, 

followed by the others, if necessary. This could reduce the time and space explosions 

explained in previous sections of this chapter. 

6.8.    Summary 

This chapter presented the results of various test scenarios utilizing MERCURY. 

These results were analyzed by the five performance dimensions of time, space, power 

and purity, coverage and process optimization. Time and space were both recognized as 

potential downsides to MERCURY; however, several optimization methods to future 
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code iterations and algorithms that could reduce these effects are presented in Chapter 

Seven. Power and purity scores, in general, were shown to increase between selection and 

construction, possibly indicating useful selection methods, operators, or constructive 

rules. Although a statistically significant improvement between selection and 

construction using the optimization techniques of RSM was not shown, other important 

information was obtained through this analysis. These techniques were recognized as 

potential "guidelines" for increasing the performance of a constructive induction learning 

engine. RSM could provide the virus detection programmer a priori knowledge, resulting 

in a better detection system. Further conclusions from these analyses are presented in 

Chapter Seven. 
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7. Conclusions 

7.1.    Research Overview 

This research integrated four different domains: computer virus detection, human 

immunology, computer immunology and constructive induction. The goal of this research 

was three-fold. First, a computer health model was defined that could possibly improve 

the current "global" approach to computer viruses/This health model was based on the 

public health system, and provided a high level view of a Computer Health System. 

Second, a computer immune model was defined that could possibly improve the current 

"local" approach to computer virus detection. This detection model was based on the 

human immune system, and provided a high level view of an individual computer 

immune system. Third, a detection model was developed, represented by the prototype 

MERCURY. This model utilized the machine learning concept of constructive induction 

to capture the human immune characteristic of self-adaptation. The work accomplished as 

part of this investigation tested the primary hypotheses. 
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7.2.    Research Hypotheses 

Primary Hypotheses 

1. The public health system is a useful model for a Computer Health 

System for the global protection of computer system against viruses 

2. The human immune system is a useful model for a virus detection 

system on an individual computer system 

3. Constructive induction provides a suitable learning mechanism for the 

virus detector system of an individual computer system 

The first two objectives of this research were to test the first two hypotheses to 

determine if the public health system and the human immune system were useful models 

for a Computer Health System and computer immune system, respectively. To 

accomplish this objective, research in the areas of public health and human immunology 

was conducted. The requirements, objectives and components of the models were also 

evaluated. Both computer models are informal, explanatory models based on some 

essential qualities of their respective systems. Due to the models' informalities, though, 

not all of their aspects were explicitly stated. 

Though the first two objectives were not formally tested, the first two hypotheses 

can be supported. The Computer Health System was derived by analogy from an 

effective system in an applicable domain. The computer immune system was also 

derived by analogy, and its main functions of detection, adaptation and memory were 
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translated into the design of the prototype, MERCURY, and abstractly demonstrated in 

its implementation. 

The third objective of this research was to empirically test the third hypothesis. 

This objective investigated whether constructive induction was suitable for virus 

detection in a computer immune system. Testing was conducted utilizing MERCURY. 

While MERCURY captures the essence of constructive induction, it does not fully 

employ all the characteristics of a complete inductive engine. The analyses supported the 

third hypothesis by failing to reject it, and by showing empirical evidence that 

construction improved classification. In other words, MERCURY was not able to 

validate, or refute, that constructive induction definitively provides a suitable learning 

mechanism for the virus detector system of an individual computer system. 

The results of these tests did provide empirical evidence and analytical knowledge 

that could make the learning process more efficient. Since the main disadvantage of 

constructive induction is its computational explosion, these results provided 

mathematically based methods which could decrease its computational complexity. 

These methods could improve the capabilities of a fully developed constructive induction 

based virus detector, by providing knowledge about the problem domain and the system 

parameters a priori. To confirm these findings, a process optimization simulation was 

conducted to demonstrate the effectiveness of a priori knowledge applied to the virus 

detection problem. 

The third hypothesis was decomposed into smaller, more manageable, sub- 

hypotheses. The first sub-hypothesis was the Virus Feature Hypothesis: 
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Virus Feature Hypothesis 

Byte patterns can be used as the basis of a 

constructive induction based computer virus detector. 

Although current virus research stated byte patterns were useful features, it was 

necessary to ensure constructive induction did not decrease detection capabilities. To 

confirm this, MERCURY'S learning component was programmed to extract, manipulate, 

and test byte patterns from various files. Testing concluded that the learning component, 

using features composed of byte patterns, was able to detect self and nonself files with 

varying degrees of accuracy. Therefore, it can be concluded that byte patterns can be 

used as the basis of a constructive induction based computer virus detector. 

The second sub-hypothesis was the Constructive Operator Hypothesis: 

Constructive Operator Hypothesis 

Logical and spatial operators can be used for 

constructing new attributes for the computer virus detector. 

Current virus research confirms the applicability of using relative and absolute 

locations of virus characteristics to detect an infected file. This hypothesis validated that 

the choice of operators combining these characteristics was adequate, better 

distinguishing between infected and uninfected data. To confirm this, MERCURY'S 

learning component was programmed to manipulate the byte patterns from various files 

based on two types of operators, logical and spatial. Testing concluded that the learning 
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component, using logical and spatial operators, was able to detect self and nonself files 

with varying degrees of accuracy. While the logical operators performed better in this 

system, spatial operators should not be discounted. Further testing of these spatial 

operators should be conducted. Therefore, it can be concluded that logical operators can 

be used for constructing new features for the computer virus detector. More research is 

required for spatial operators. 

7.3.    Research Implications 

The results of analyzing MERCURY demonstrate an inherent lack of 

representational power of computer virus byte patterns using selective induction methods. 

Constructive induction provides new, potentially powerful, and often necessary 

representations. However, the results of this research confirmed constructive induction's 

main deficiency, the explosion in the number of hypotheses generated. 

The effects of this deficiency can be improved by utilizing key pieces of 

knowledge to guide construction. Process optimization through statistical techniques, 

provides direct insight into these key pieces of knowledge. Many factors influence the 

computational explosion of this system. Some of these are: feature size, file size, number 

of selection methods, number of operators, number of constructions, and construction 

rules. Examples of some guidelines for improving the performance of constructive 

induction in a virus detector are: the ordering of the selection methods, the ordering of 

the operators, the sequence of selection and construction, the appropriate time to 

evaluate, and the appropriate hypotheses to evaluate. Knowledge about the virus domain, 
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such as characteristics of typical viruses and regularities in the byte patterns, also 

provides guidance for effective construction. However, care must be taken to not 

constrict or oversimplify the problem. 

7.4.    Research Limitations 

Several factors limited aspects of this research. Due to the broadness of the four 

research areas and the disparity of the concepts being intertwined, time was a limitation. 

As proven in the subsequent section discussing future research topics, this problem 

domain is without boundaries in a vast number of directions. This research focused on 

the detection component of an individual computer immune system as part of a larger 

Computer Health System. Since these computer immune models were informal models, 

the validity of the models is limited to common sense and intuition. 

Other limitations to this system were caused by hardware configuration and 

software design constraints, such as processing speed and memory and limited data 

structures. In addition, due to the computational complexity of this learning method, the 

number of test cases, the number of generation methods, the number of operators, the 

number of construction rules, and the number of constructions were all limited. 

The results of testing and the conclusions drawn from them were also limited. 

Due to the small file sizes and example set sizes, and the non-normal distribution of this 

particular data, conclusions can not be absolutely validated. On the other hand, the 

primary hypothesis for constructive induction applicability in the virus detection domain 

can not be rejected. There is not enough evidence to support the claim that constructive 
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induction is the answer to virus detection. However, evidence suggest that through 

empirical analyses and statistical techniques, improvements can be made over current 

methods of virus detection 

7.5.    Future Research 

7.5.1.   Computer Immunology 

Application of computer immune models to other domains. The Computer 

Health System model and the computer immune model that were 

developed in this research can be utilized in other computer security 

domains. These models provide global scoped and locally driven 

protection for computer networks and individual computers.   The 

applicability of these models to intrusion detection, change detection, and 

malicious user detection should be explored. An additional goal of this 

research should be the integration of the various domains through these 

models. 

Model refinement. This research provided an overview of the Computer 

Health System, as discussed in Chapter Three. Further model refinement 

is needed to expand components, specify interfaces between the global 

Computer Health System and the local computer immune model, and 

specifying the communication protocols between systems. 
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Expanding the computer immune model. This research focused on 

specifying the detection component of the computer immune model. The 

system analysis, virus elimination, and file repair tasks need to further 

specification. Current antivirus techniques, discussed in Chapter Two, can 

be incorporated into the model to handle these tasks. 

Other aspects of immune system models. This research investigated the 

use of the human immune system's defenses against intracellular and 

extracellular infection as a means of detecting computer viruses.   Certain 

immunological aspects were not fully addressed in the model 

specification, requiring future work. These areas include autoimmunity, 

allergy, B-cell and T-cell interaction, and the role of macrophages. 

Additionally, a new concept of immune system operation, the danger 

theory, should be investigated. This theory claims that the immune system 

does not work through detection of self and nonself, but rather through 

detection of dangerous nonself through a costimulatory signal produced by 

antigen presenting cells [Ric96, Pen96]. 

7.5.2.  Machine Learning 

Different forms of machine learning. The use of constructive induction in 

this research was not the only from of machine learning available. As 

discussed in Section 2.5, three current forms of machine learning, neural 

networks, genetic algorithms, and intelligent agents should be studied for 
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their applicability to this domain. These forms of learning should be aided 

by the empirical evidence that that was collected and utilized in this 

research. 

User intervention.   The current structure of MERCURY does not allow 

the user to intervene into either the learning or virus detection processes. 

Future research should investigate means for correcting overlearning or 

underlearning by HEC, proactively adding self to the knowledge base, and 

handling unclassified files. 

Constructive Induction Code Optimization.   Several aspects of the 

constructive induction process can be optimized based upon the results of 

this research. 

• Data structure improvements. The hypotheses are currently stored 

in a flat list structure. This structure is traversed several times to 

construct hypotheses and evaluation. The system could be 

improved if an index into the features of the hypotheses was 

maintained. With such an index, it would be possible to search 

through the example file once to determine coverage, power and 

purity. Coverage is currently determined independently of the 

score for power and purity. 

• Inclusion of domain specific bias from either empirical evidence or 

antivirus researchers. Very little virus specific bias is included in 

HEC. The empirical results of this investigation and other biases 

could be used to guide the choice of hypotheses used for 
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construction, the operators used to construct, and the selection of 

features from the files. Relaxing these biases would help 

determine their affect on learning. This research should attempt to 

reduce the average execution time and memory requirements. 

• Extracting Signatures. HEC does not attempt to find the minimal 

number of hypotheses necessary to classify the examples, with 

high power and purity. Determining the subset of hypotheses 

needed to classify self and nonself is needed. In order to determine 

this, a mapping between the examples and the classifying 

hypotheses are needed. Additionally, analyses of the "outlier 

hypotheses" could be conducted to determine if they possess 

highly effective characteristics. 

• Testing the predictive capability. Several tests exist for validating 

the machine learning process and determining the predictive 

capability of the detectors. These tests should be used inside HEC 

when evaluating candidates for signatures. 

Future RSM applications.  Regression analysis is one response surface 

methodology (RSM) technique used to investigate the relationships 

between process input parameters and process results. Additional 

techniques could be used, such as steepest ascent, which allows the 

experimenter to "scale" the heights of a response surface, in order to find 

the optimal region. This "hill climbing" technique is especially useful 

when there is more than one response variable which needs to be 
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optimized, or there are additional constraints on the system. Design of 

experiments can also be used on different system variables to improve the 

application of the RSM techniques. Using differing levels of feature size, 

file size, etc, can give more insight into which variables can be optimized. 

7.5.3.  Virus Detection 

Different types of viral detection. This research explored the use of bytes 

as features for a constructive induction based computer virus detector. 

Other antiviral techniques use heuristics and system call analysis to 

determine if a computer is infected. A study of MERCURY'S techniques 

should be investigated to provide a multilayered defense for the computer 

immune system, akin to the multilayered defense provided by the innate 

and adaptive immune system of the human body. 

Different types of viruses. MERCURY is designed to detect file infector 

viruses. Boot sector, polymorphic, and stealth viruses should be 

researched to determine methodologies to integrate detectors for these 

viruses with MERCURY. 

Dynamic virus scanning. MERCURY currently detects only when 

invoked by the user. In order to detect viruses as they infect a file, 

dynamic virus scanning is needed. 
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This study began by building two models: a Computer Health System and an 

individual computer immune system. Once the modeling for the two systems was 

complete, the prototype of MERCURY was designed and developed to capture the 

essence of the individual computer immune system. The overall results provided an 

analysis of constructive induction approach applied to the virus detection domain, as well 

as areas for optimizing this learning method and reducing its computational complexity. 

This research recognized specific areas of improvement in machine learning that 

could be applied to current methods of virus detection, in order to improve performance. 

It also presented the incorporation of this constructive induction component into an 

individual computer's immune system, and further incorporated this system into an 

overall global picture of computer health. 
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Appendix A -- Source Code 

The source code for MERCURY is not included as part of this document. Those 

interested in obtaining a copy of the source code should direct their requests to: 

Dr. Gregg Gunsch 

AFIT/ENG 
2950 P Street 

WPAFB, OH 45433-7765 

gregg.gunsch @ afit.af.mil 
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